5(n2+n)=3(n2-2n)

Simple and best practice solution for 5(n2+n)=3(n2-2n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(n2+n)=3(n2-2n) equation:



5(n2+n)=3(n2-2n)
We move all terms to the left:
5(n2+n)-(3(n2-2n))=0
We add all the numbers together, and all the variables
5(+n^2+n)-(3(+n^2-2n))=0
We multiply parentheses
5n^2-(3(+n^2-2n))+5n=0
We calculate terms in parentheses: -(3(+n^2-2n)), so:
3(+n^2-2n)
We multiply parentheses
3n^2-6n
Back to the equation:
-(3n^2-6n)
We add all the numbers together, and all the variables
5n^2+5n-(3n^2-6n)=0
We get rid of parentheses
5n^2-3n^2+5n+6n=0
We add all the numbers together, and all the variables
2n^2+11n=0
a = 2; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·2·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*2}=\frac{-22}{4} =-5+1/2 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*2}=\frac{0}{4} =0 $

See similar equations:

| 4d-2d÷3=10 | | 21=|x-20| | | -f+2+4f=8-4f | | -4y=15-3y | | 11x-1=2x+43 | | 3+9=-2(2x-6) | | 2x-4x+3=-13 | | q4−1=3 | | 4w-7=2w+13=-26 | | 9d-3d=24 | | 29=6+10=x | | 24x+7=25x+3 | | 8(9x+7)=-15 | | 5(x-3)=3+-12 | | 8.4-15.3y=-17.12-19.8y-5.53 | | -6v=10-7v | | 19x+3=20x+3=180 | | |2r-4|=|2r+10| | | 9x+21+3x=5 | | 21+x+90=180 | | 13y=40+5y | | 9x+21+3x=x5 | | 27=8x=3-2x | | 3n–8=-2 | | 8x-48=3x-24 | | 1/2(2p+8)=-p+5 | | 1/2(r-12)=42 | | -x-5(1-7x)=131 | | 5c-10=-15 | | 12x=8x+3+x | | -9x+1=-01 | | -2x+4=6x+12 |

Equations solver categories