If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(t-9)12.t=20
We move all terms to the left:
5(t-9)12.t-(20)=0
We multiply parentheses
60t^2-540t-20=0
a = 60; b = -540; c = -20;
Δ = b2-4ac
Δ = -5402-4·60·(-20)
Δ = 296400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{296400}=\sqrt{400*741}=\sqrt{400}*\sqrt{741}=20\sqrt{741}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-20\sqrt{741}}{2*60}=\frac{540-20\sqrt{741}}{120} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+20\sqrt{741}}{2*60}=\frac{540+20\sqrt{741}}{120} $
| Y=9(30+y) | | 70+x=224 | | 3x-10=-4x+32 | | -6(2x+2)=12(-x-1) | | 145=45x+25 | | 67+x=347 | | 180-x=4×(90-x)-15 | | n/3.2=-4.5 | | 2(7-3n)=-6n+14 | | 12-6x=-3x-3 | | (x+30)+119=180 | | 250x=3500 | | 2/3×-7=x | | 6+a/12=28 | | (2x+10)°+3°=180° | | 560x=1900 | | 150=(.30x)=225 | | n+4-15=7n-5 | | 13-4x=-2-x | | −15=−5m/7 | | -17+x=10 | | 5(5/2+3y/2)+4y=-5 | | 11(4-6x)+5(13x+10)=9 | | 6(x+3)=3 | | -7(w-4)+8w=3(w+9) | | −1/2(x+2)+1/12x=3 | | 17=4x-2+4 | | 42(x+1)=4x−3 | | Y=-2x²-4x | | −9x+3=45 | | 6(x+5)=2 | | 6(3+x)=2 |