5(t2-2)2-7(t2-2)-10=0

Simple and best practice solution for 5(t2-2)2-7(t2-2)-10=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(t2-2)2-7(t2-2)-10=0 equation:



5(t2-2)2-7(t2-2)-10=0
We add all the numbers together, and all the variables
5(+t^2-2)2-7(+t^2-2)-10=0
We multiply parentheses
10t^2-7t^2-20+14-10=0
We add all the numbers together, and all the variables
3t^2-16=0
a = 3; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·3·(-16)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*3}=\frac{0-8\sqrt{3}}{6} =-\frac{8\sqrt{3}}{6} =-\frac{4\sqrt{3}}{3} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*3}=\frac{0+8\sqrt{3}}{6} =\frac{8\sqrt{3}}{6} =\frac{4\sqrt{3}}{3} $

See similar equations:

| 8+9x=21+9 | | 0.66(x-6)=-1/3x-14 | | 5t^2+126t+26=0 | | 1/8x-6=-12 | | 0.50(x+8)-9=2 | | |w+4|=11 | | 0.75(8x+24)-1=3x-1 | | 5t+126t+26=0 | | 4x+4=4x+7 | | 10^2+1x-2=154 | | 26,2x-4,72=3,7+4,2 | | -6m=3(3m-1) | | 8p^2+18p+45=2p | | Y=2x-2.75 | | 72x+12600=103x-400 | | -58=5+9x | | -0,02x-4,07=3,23x+4,08 | | 5x+7=-93 | | .66a+.5=3.5 | | -18,48+532,7x+12=54,3x | | 1052x+3=-12,64x-24,2 | | .66d+6=8 | | -2,5x+1,2=-8,3-2 | | 15x+3(1)=42 | | -20y=-160 | | 5x-2,5=3x+4 | | 2x-8=-6+1,5 | | -41y=41 | | R=-v^2-6v | | 2x–8=-6+1,5 | | 0.25n+8=6 | | -7/3r-7=3 |

Equations solver categories