If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(x-2)/7(x+1)=3/4
We move all terms to the left:
5(x-2)/7(x+1)-(3/4)=0
Domain of the equation: 7(x+1)!=0We add all the numbers together, and all the variables
x∈R
5(x-2)/7(x+1)-(+3/4)=0
We get rid of parentheses
5(x-2)/7(x+1)-3/4=0
We calculate fractions
(20x-40)/(28x+28)+(-21xx/(28x+28)=0
We calculate terms in parentheses: +(-21xx/(28x+28), so:We get rid of parentheses
-21xx/(28x+28
We multiply all the terms by the denominator
-21xx
Back to the equation:
+(-21xx)
(20x-40)/(28x+28)-21xx=0
We multiply all the terms by the denominator
(20x-40)-21xx*(28x+28)=0
We multiply parentheses
-588x^2+(20x-40)-588x=0
We get rid of parentheses
-588x^2+20x-588x-40=0
We add all the numbers together, and all the variables
-588x^2-568x-40=0
a = -588; b = -568; c = -40;
Δ = b2-4ac
Δ = -5682-4·(-588)·(-40)
Δ = 228544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228544}=\sqrt{64*3571}=\sqrt{64}*\sqrt{3571}=8\sqrt{3571}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-568)-8\sqrt{3571}}{2*-588}=\frac{568-8\sqrt{3571}}{-1176} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-568)+8\sqrt{3571}}{2*-588}=\frac{568+8\sqrt{3571}}{-1176} $
| 1/2x+2=3/8x-2 | | 2(p+19)−5=–5 | | 16.5h=131 | | t^3-125t=52500 | | (40)=6/y | | 62x-3=6-2x+1x=-1 | | 10x+6=84 | | K-2/4=3k+1/4 | | -5n+4n=-13n | | 4(5)+5y=240-6y | | 65=3b+17 | | 5j-6/9+1=12 | | x−80=300 | | (6y-44)=68 | | 7x-6)(6x-8)= | | -2(w+9)=45 | | 32x=x-3 | | x-6.2=9 | | (2n)^n=65536 | | 15^x=4 | | 5x+4x+90°=180° | | 5x+4x+90°=18₹° | | ƒ(x)=5x+5/2 | | 0.25n+3=1+0/75n | | (2x-10)×+6)=0 | | 30/a=0.6 | | 38/a=0.6 | | 2(9x–1)+12x=10–2x | | (13x+21)=(12x+25) | | (2x)3=6(4) | | x-4.8=2.88 | | n5=4 |