If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(x-36)-(x+36)-(48-x(x-48))=0
We multiply parentheses
5x-(x+36)-(48-x(x-48))-180=0
We get rid of parentheses
5x-x-(48-x(x-48))-36-180=0
We calculate terms in parentheses: -(48-x(x-48)), so:We add all the numbers together, and all the variables
48-x(x-48)
determiningTheFunctionDomain -x(x-48)+48
We multiply parentheses
-x^2+48x+48
We add all the numbers together, and all the variables
-1x^2+48x+48
Back to the equation:
-(-1x^2+48x+48)
-(-1x^2+48x+48)+4x-216=0
We get rid of parentheses
1x^2-48x+4x-48-216=0
We add all the numbers together, and all the variables
x^2-44x-264=0
a = 1; b = -44; c = -264;
Δ = b2-4ac
Δ = -442-4·1·(-264)
Δ = 2992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2992}=\sqrt{16*187}=\sqrt{16}*\sqrt{187}=4\sqrt{187}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-4\sqrt{187}}{2*1}=\frac{44-4\sqrt{187}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+4\sqrt{187}}{2*1}=\frac{44+4\sqrt{187}}{2} $
| 12-3=n | | -32(2x+6)=-(9+3x) | | 60+9/2x=6 | | 5(x-36)-(x+36)=48-x(x-48) | | 4x(x^2-32)=0 | | -9k=-153 | | -98=-7v-7(2-3v) | | K-0.75k=0.5(k+2)-0.25k | | h4=8 | | -3(7+7b)=105 | | (x+1)×(x+2)=(x-1)×(x-5) | | 80=3m-5 | | P^2+p=12 | | -6(7-6n)+3=-255 | | 19.97/x=0.6 | | 6+7x-3=4x+6-2x | | n-47=-84 | | 5(x+5)-4(x+1)=5 | | 6x/x-2=12/x-2+9 | | -3c+5=2c+5 | | 4(x+1=x-26 | | 7(-5n+3)=266 | | 6/7x=200/7 | | 168=-7(-6+6x) | | -7=-v-3 | | 16r+2/5=10 | | 1/2(x+80)+3/2=10 | | 20-2x=80-42x | | 0.5(x+80)+1.5x=10 | | -7(v+8=-105 | | 0.5(x+80+1.5x=10 | | 180=40+40+(2x+30) |