5*(12)=x*(4+x)

Simple and best practice solution for 5*(12)=x*(4+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5*(12)=x*(4+x) equation:



5(12)=x(4+x)
We move all terms to the left:
5(12)-(x(4+x))=0
We add all the numbers together, and all the variables
-(x(x+4))+512=0
We calculate terms in parentheses: -(x(x+4)), so:
x(x+4)
We multiply parentheses
x^2+4x
Back to the equation:
-(x^2+4x)
We get rid of parentheses
-x^2-4x+512=0
We add all the numbers together, and all the variables
-1x^2-4x+512=0
a = -1; b = -4; c = +512;
Δ = b2-4ac
Δ = -42-4·(-1)·512
Δ = 2064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2064}=\sqrt{16*129}=\sqrt{16}*\sqrt{129}=4\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{129}}{2*-1}=\frac{4-4\sqrt{129}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{129}}{2*-1}=\frac{4+4\sqrt{129}}{-2} $

See similar equations:

| 3x-7+8=10x-5 | | 60=4x+x2 | | 4x+159=180 | | d+3-7=10 | | 0.88=18/y | | 45-y=4y | | 12u=6+9u | | 13y-31=70 | | x/2.60=7.5 | | x/1.40=7.5 | | 420=21g | | 342=18y | | x5=8+12 | | -6(x+-3)+7=-5 | | 5x-3=(x+3)+3x | | R+44=5(r-4) | | -9.32x/4=-9.32 | | 5(x+5)-12=28 | | 3n+7+n=5n-9 | | 5(x+5)-12=26 | | -1=p+-1 | | 3c-5c=2 | | 5.75=-0.5a | | 30=15+3•n | | 2b-1=16-b | | 5+1x15=12 | | 7x+3=2x+13 | | 4(5x-5)=8x-20 | | (x+37)(x+67)=180 | | 5=w2/2 | | 4=2m=7m | | 4x-(7x+5)=8x+2(x-3) |

Equations solver categories