If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+(4/7)(21+3x)=41
We move all terms to the left:
5+(4/7)(21+3x)-(41)=0
Domain of the equation: 7)(21+3x)!=0We add all the numbers together, and all the variables
x∈R
(+4/7)(3x+21)+5-41=0
We add all the numbers together, and all the variables
(+4/7)(3x+21)-36=0
We multiply parentheses ..
(+12x^2+4/7*21)-36=0
We multiply all the terms by the denominator
(+12x^2+4-36*7*21)=0
We get rid of parentheses
12x^2+4-36*7*21=0
We add all the numbers together, and all the variables
12x^2-5288=0
a = 12; b = 0; c = -5288;
Δ = b2-4ac
Δ = 02-4·12·(-5288)
Δ = 253824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{253824}=\sqrt{64*3966}=\sqrt{64}*\sqrt{3966}=8\sqrt{3966}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3966}}{2*12}=\frac{0-8\sqrt{3966}}{24} =-\frac{8\sqrt{3966}}{24} =-\frac{\sqrt{3966}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3966}}{2*12}=\frac{0+8\sqrt{3966}}{24} =\frac{8\sqrt{3966}}{24} =\frac{\sqrt{3966}}{3} $
| 13/12x+1/12x=8x+1/6+11/12x | | 13/12x+1/12x=8x+1/6=11/12x | | x^2+3x−40=0 | | 11.02x+9.12=50.85 | | 6x+3/10=x+2/20 | | 4(x-6)=3(2x+9 | | -(4)/(9)x=-(1)/(2) | | X-2/4=6x+2/9 | | 3+4(-2x+5)=-6+3 | | 56=2/3x | | 180-3x+3x=180 | | W(w+3)=9(w-1) | | X+1/6=2x+2/5 | | .07x+x=14401 | | 7p−8=-22 | | 0.06y=3.6 | | 6x=91.50 | | 4-31/2=1/4x | | y^2-2y-18=0 | | -24x2-5x+1=0 | | 24x+18=162 | | 24x+18=163 | | 5t=36 | | x²-121=0 | | 2x²-11x+12=0 | | 2-8x=1-5x | | 9=4.2+x | | 5/4=-19/8+3/5x | | -9x-7=3x-6x | | X^2=y^2-2y+1 | | 2x+1/4=3x+2/2 | | 4x+5x=3+7x |