If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+(7x(3+7x)-2)=112
We move all terms to the left:
5+(7x(3+7x)-2)-(112)=0
We add all the numbers together, and all the variables
(7x(7x+3)-2)+5-112=0
We add all the numbers together, and all the variables
(7x(7x+3)-2)-107=0
We calculate terms in parentheses: +(7x(7x+3)-2), so:We get rid of parentheses
7x(7x+3)-2
We multiply parentheses
49x^2+21x-2
Back to the equation:
+(49x^2+21x-2)
49x^2+21x-2-107=0
We add all the numbers together, and all the variables
49x^2+21x-109=0
a = 49; b = 21; c = -109;
Δ = b2-4ac
Δ = 212-4·49·(-109)
Δ = 21805
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21805}=\sqrt{49*445}=\sqrt{49}*\sqrt{445}=7\sqrt{445}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-7\sqrt{445}}{2*49}=\frac{-21-7\sqrt{445}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+7\sqrt{445}}{2*49}=\frac{-21+7\sqrt{445}}{98} $
| m2+13m+12=0 | | -3y+12+6y=21 | | 24/(-3x)=0 | | 3x2−15=0 | | 1m-2=2m+5 | | 4x2+15x+12=0 | | 4x^2+3x^2-10=18 | | 4x+7=-13+8x | | 3x+x/4=18 | | 5x-29=11+3x | | 7(3x+6)-11=(x+2) | | ⅔x-1=x+7 | | ½x+6=-4 | | y3+4=−2 | | 4x+5x-16=48-7x | | 2x2+2x-40=0 | | 5x2=80 | | x3-1=0 | | -5(n-5)=-6(n-6 | | 12+4(x−1)=3(x+2)+2 | | 25x+15=100 | | 3x5-7=x | | 2×+y=41 | | 18x-8=4x+6 | | 9−3(4−11x)=(5x+2)⋅6−12 | | 0=x^2+6x-84 | | (i+1)^15=20i | | 2y^2-4y=-2 | | 9+9z=9 | | x+2/2=x-4 | | 2(5+d)=2-4d | | 2/4x=3/4 |