5+10m=8+20/2m

Simple and best practice solution for 5+10m=8+20/2m equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5+10m=8+20/2m equation:



5+10m=8+20/2m
We move all terms to the left:
5+10m-(8+20/2m)=0
Domain of the equation: 2m)!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
10m-(20/2m+8)+5=0
We get rid of parentheses
10m-20/2m-8+5=0
We multiply all the terms by the denominator
10m*2m-8*2m+5*2m-20=0
Wy multiply elements
20m^2-16m+10m-20=0
We add all the numbers together, and all the variables
20m^2-6m-20=0
a = 20; b = -6; c = -20;
Δ = b2-4ac
Δ = -62-4·20·(-20)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{409}}{2*20}=\frac{6-2\sqrt{409}}{40} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{409}}{2*20}=\frac{6+2\sqrt{409}}{40} $

See similar equations:

| -(7x-2)+4x-5=-3 | | -5t^2+50t-80=0 | | 4z-2+6z=18 | | 14+6x=8x+8 | | 1.2=–3b | | 14+4(x-5)=6-2× | | P=0.8x-500 | | 0.5+10=z+4 | | 16c+5c-20c+1=16 | | 14x-12=-12 | | -3x+6-5(x-1)=-(2x+4)-5x+5 | | n/3-4=-4 | | 7y-9-2+5=0 | | b+(3/16)=5/16 | | x/7=67 | | -2k-6k=-7k | | 14x+12=-12 | | b+(3/16)=(5/16) | | 5b-13=-28 | | 20h−20h+3h=15 | | 6(x+3)-2)7x-3)=17 | | 6m^2+21m=0 | | r+-9r-4=20 | | 3/4(12x+4)=10 | | r+-9r−-4=20 | | x+-4=-13 | | 24=-3h+23h | | 18x^2-39+20=0 | | 8y-5y-2=16-3y | | -4-(x)=-2 | | 5/y+4=-8 | | 2h+2=5h+2 |

Equations solver categories