5+3/5b=7/10b

Simple and best practice solution for 5+3/5b=7/10b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5+3/5b=7/10b equation:



5+3/5b=7/10b
We move all terms to the left:
5+3/5b-(7/10b)=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
Domain of the equation: 10b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
3/5b-(+7/10b)+5=0
We get rid of parentheses
3/5b-7/10b+5=0
We calculate fractions
30b/50b^2+(-35b)/50b^2+5=0
We multiply all the terms by the denominator
30b+(-35b)+5*50b^2=0
Wy multiply elements
250b^2+30b+(-35b)=0
We get rid of parentheses
250b^2+30b-35b=0
We add all the numbers together, and all the variables
250b^2-5b=0
a = 250; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·250·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*250}=\frac{0}{500} =0 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*250}=\frac{10}{500} =1/50 $

See similar equations:

| −4/3f=4/5​ | | (-7)=t/7 | | 1/14(a+8)=1/4(3a-a) | | -1/3x^2+20x=0 | | 1,6=n,24 | | -6k-7k=0 | | −43​ f=45​ | | -2u+10=5(u-5) | | 6w+18-9w=12 | | 3(x+2)-8(2x-7)=16 | | 10/3=(−25​ )x​ | | w-11=2.4 | | x=(8/6)*4 | | 45+46.45x=53.95x | | -j+-14j+14j+3=-12 | | 3(5-x)=4(2x+1 | | 2(2×t)=140 | | 8+3(-8-7x)=152 | | ((5×+5)/5)-3=8/x | | 2(7x-14)=7 | | 3c−3c+c=6 | | 19a+-20a-5=-2 | | w/(-3)=6 | | 1=2+m/18 | | 50=10x5 | | 8u-4u-2u-1=5 | | 4(3b-3)=9-b | | -1.89=-8.5p+1.2 | | 2z+z^2=6 | | 30+5x=75 | | -11-5a=6(5a+3) | | 0=x8-8x4+16 |

Equations solver categories