5-(1)/(2)x=(5)/(8)x+2

Simple and best practice solution for 5-(1)/(2)x=(5)/(8)x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5-(1)/(2)x=(5)/(8)x+2 equation:



5-(1)/(2)x=(5)/(8)x+2
We move all terms to the left:
5-(1)/(2)x-((5)/(8)x+2)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 8x+2)!=0
x∈R
We get rid of parentheses
-1/2x-5/8x-2+5=0
We calculate fractions
(-8x)/16x^2+(-10x)/16x^2-2+5=0
We add all the numbers together, and all the variables
(-8x)/16x^2+(-10x)/16x^2+3=0
We multiply all the terms by the denominator
(-8x)+(-10x)+3*16x^2=0
Wy multiply elements
48x^2+(-8x)+(-10x)=0
We get rid of parentheses
48x^2-8x-10x=0
We add all the numbers together, and all the variables
48x^2-18x=0
a = 48; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·48·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*48}=\frac{0}{96} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*48}=\frac{36}{96} =3/8 $

See similar equations:

| 4x=7+x | | P=5m | | 5=4/3x54 | | 3x-5=2(x-3)+x | | 3(3y-13)-4y=-14 | | –4d+8=d–2. | | 1p+0.06=360.40 | | 1+2p=-8+5p | | 2x=447 | | -17x-10-15x=22x+83 | | 3x2^x=9 | | 0.05n-15.4=0.01+20.4 | | 4x4/2=2x | | x-4=-3x-6 | | N+6=2n+10 | | E^x-5=14 | | 4=2(x+5)-8 | | 9+k=6+2k | | a^2+2a-1=2 | | -3(4f-8)=-36 | | -20=4(y-6) | | -3+2x=2x+3 | | 9/5+3/5x=59/20+7/4x+1/4 | | 0.3(-9.6+7q)= | | 20x-7=23×-21 | | -4a+5=4a-8a | | 5x+4(2x-1)=22 | | 5c+4-2c=-(c+8) | | 1-8w=-15 | | -x/3+9=42 | | -1=-3p+2p | | 10(n+8)+2=120 |

Equations solver categories