If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5-(6k+1)=(5k-3)-(k-2)(5k-3)-(k-2)
We move all terms to the left:
5-(6k+1)-((5k-3)-(k-2)(5k-3)-(k-2))=0
We get rid of parentheses
-6k-((5k-3)-(k-2)(5k-3)-(k-2))-1+5=0
We multiply parentheses ..
-((5k-3)-(+5k^2-3k-10k+6)-(k-2))-6k-1+5=0
We calculate terms in parentheses: -((5k-3)-(+5k^2-3k-10k+6)-(k-2)), so:We add all the numbers together, and all the variables
(5k-3)-(+5k^2-3k-10k+6)-(k-2)
determiningTheFunctionDomain -(+5k^2-3k-10k+6)+(5k-3)-(k-2)
We get rid of parentheses
-5k^2+3k+10k+5k-k-6-3+2
We add all the numbers together, and all the variables
-5k^2+17k-7
Back to the equation:
-(-5k^2+17k-7)
-(-5k^2+17k-7)-6k+4=0
We get rid of parentheses
5k^2-17k-6k+7+4=0
We add all the numbers together, and all the variables
5k^2-23k+11=0
a = 5; b = -23; c = +11;
Δ = b2-4ac
Δ = -232-4·5·11
Δ = 309
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{309}}{2*5}=\frac{23-\sqrt{309}}{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{309}}{2*5}=\frac{23+\sqrt{309}}{10} $
| 5-6K-1=(5k-3)-(k-2)(5k-3)-(k-2) | | 0.25c-8=4 | | 3(m-5)=3(m+1) | | (3z-7)(8-z)=0 | | 5b-4=12b-8 | | 15^(y+6)=11 | | 6x+x=32 | | (2x+5)+(4x+6)=(2x+4x)+(5+6) | | 2x×4x=32 | | 5X+32=2X+3x42 | | (4t3+3t2)−(t3+t2+t)=(4t3+3t2)−(t3+t2+t)= | | 2x-5/10-1-x/5=0 | | 2x+15=-60 | | 160.3=10x-4= | | 92-x/159=175 | | (15/100)x=60 | | 5(2x-1)-4(3x+5)=2(6x-3)-7(2x-1) | | (6y)^2-24y=0 | | 15-(4+2x)=65 | | -7-6(1-6k)=-13-4k | | 3x+-10=2x+9 | | -5h(h+12)-(4h-2)=h-8 | | 4x-6=3x–1 | | .6x=4000 | | -1/4-3=x+2 | | .60x=4000 | | x-1-x=2x+1-x | | n−3n=2 | | .6x=3000 | | 2x/3+x=0.55 | | 3(4y+2)+6y=5y+6=2y+1 | | 3+2(r−2)=7 |