If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5-(8x-7)+18x=31x(-90+28x)-45
We move all terms to the left:
5-(8x-7)+18x-(31x(-90+28x)-45)=0
We add all the numbers together, and all the variables
-(8x-7)+18x-(31x(28x-90)-45)+5=0
We add all the numbers together, and all the variables
18x-(8x-7)-(31x(28x-90)-45)+5=0
We get rid of parentheses
18x-8x-(31x(28x-90)-45)+7+5=0
We calculate terms in parentheses: -(31x(28x-90)-45), so:We add all the numbers together, and all the variables
31x(28x-90)-45
We multiply parentheses
868x^2-2790x-45
Back to the equation:
-(868x^2-2790x-45)
10x-(868x^2-2790x-45)+12=0
We get rid of parentheses
-868x^2+10x+2790x+45+12=0
We add all the numbers together, and all the variables
-868x^2+2800x+57=0
a = -868; b = 2800; c = +57;
Δ = b2-4ac
Δ = 28002-4·(-868)·57
Δ = 8037904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8037904}=\sqrt{16*502369}=\sqrt{16}*\sqrt{502369}=4\sqrt{502369}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2800)-4\sqrt{502369}}{2*-868}=\frac{-2800-4\sqrt{502369}}{-1736} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2800)+4\sqrt{502369}}{2*-868}=\frac{-2800+4\sqrt{502369}}{-1736} $
| 1÷x-4=7 | | y÷8=1.1 | | 12u-4u=8 | | -2m+6=10 | | 5x2-15x-50=0 | | 5-8x=-3x+5 | | 2+y/3=8 | | 5-8x=3x+5 | | 2x+12x=3x=3x-5x | | 8c+5=85 | | 9-6(3h+11)=7(h+7)-11 | | 4(t-71)=44 | | h/10+96=86 | | 4x-1=-3x-1 | | 2.7x-1.3=8 | | d-22/9=5 | | 16(z-4)=6(5-9z) | | 15+9k=42 | | 5x-13=44 | | 10d-23=27 | | -4x+260=0 | | 56=7(d-84) | | 4(6n+9=6(4n+9) | | (y-3.2)/3^3=2.4 | | 1/2-x+1/2x=2.1/2 | | 5(3x+2)=8(2x-4) | | 1/2-x+1/2x=21/2 | | 7(2x-1)-3/5x=6/5(4-3x) | | 6c^2-8+3=0 | | (s-6)+2=9(s-4)-(8s-1) | | 7=r | | 2/4x+5=10 |