5-5x=-5/2x+8x

Simple and best practice solution for 5-5x=-5/2x+8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5-5x=-5/2x+8x equation:



5-5x=-5/2x+8x
We move all terms to the left:
5-5x-(-5/2x+8x)=0
Domain of the equation: 2x+8x)!=0
x∈R
We add all the numbers together, and all the variables
-5x-(+8x-5/2x)+5=0
We get rid of parentheses
-5x-8x+5/2x+5=0
We multiply all the terms by the denominator
-5x*2x-8x*2x+5*2x+5=0
Wy multiply elements
-10x^2-16x^2+10x+5=0
We add all the numbers together, and all the variables
-26x^2+10x+5=0
a = -26; b = 10; c = +5;
Δ = b2-4ac
Δ = 102-4·(-26)·5
Δ = 620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{620}=\sqrt{4*155}=\sqrt{4}*\sqrt{155}=2\sqrt{155}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{155}}{2*-26}=\frac{-10-2\sqrt{155}}{-52} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{155}}{2*-26}=\frac{-10+2\sqrt{155}}{-52} $

See similar equations:

| 9x=17x+6 | | -50/(-25/6)=x | | 28(w-987)=-112 | | 6y-8=2(5y-4) | | -4(c+2)=-12 | | m+-10=7 | | Y=-30x+200 | | -7+9+p=-33 | | 6(4x+9)=126 | | 9x+40=95 | | 12x+4-3x=9-3+7 | | 9b-4=-36+12b+5 | | 2r+3°=89° | | (x-8)/4-12=-9 | | -3c+5=10 | | 5(2x)-3=15x5 | | -25x+15=65 | | 5x+6x-6-x=-1 | | 90x-7x=12 | | 5(-5x+30)=50 | | 3(x-9)-7x=21 | | 4(9x+8)=2(20x)+10 | | 2*(3x+4)=20 | | -8.7x=1.4 | | 1-3(x+2)=0,5(2x-8)+3 | | 6(9+2x)=150 | | h−20=–7 | | 2(3x+5)=12x-8 | | -12=−9w | | 4(3x-8)=-25+45 | | 12(4x+8)=2x−(x+10) | | n+2=-3(n-3) |

Equations solver categories