If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5-6-1=(5K-3)-(K-2)(5K-3)-(K-2)
We move all terms to the left:
5-6-1-((5K-3)-(K-2)(5K-3)-(K-2))=0
We add all the numbers together, and all the variables
-((5K-3)-(K-2)(5K-3)-(K-2))-2=0
We multiply parentheses ..
-((5K-3)-(+5K^2-3K-10K+6)-(K-2))-2=0
We calculate terms in parentheses: -((5K-3)-(+5K^2-3K-10K+6)-(K-2)), so:We get rid of parentheses
(5K-3)-(+5K^2-3K-10K+6)-(K-2)
determiningTheFunctionDomain -(+5K^2-3K-10K+6)+(5K-3)-(K-2)
We get rid of parentheses
-5K^2+3K+10K+5K-K-6-3+2
We add all the numbers together, and all the variables
-5K^2+17K-7
Back to the equation:
-(-5K^2+17K-7)
5K^2-17K+7-2=0
We add all the numbers together, and all the variables
5K^2-17K+5=0
a = 5; b = -17; c = +5;
Δ = b2-4ac
Δ = -172-4·5·5
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$$K_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-3\sqrt{21}}{2*5}=\frac{17-3\sqrt{21}}{10} $$K_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+3\sqrt{21}}{2*5}=\frac{17+3\sqrt{21}}{10} $
| 0.25c-8=4 | | 3(m-5)=3(m+1) | | (3z-7)(8-z)=0 | | 5b-4=12b-8 | | 15^(y+6)=11 | | 6x+x=32 | | (2x+5)+(4x+6)=(2x+4x)+(5+6) | | 2x×4x=32 | | 5X+32=2X+3x42 | | (4t3+3t2)−(t3+t2+t)=(4t3+3t2)−(t3+t2+t)= | | 2x-5/10-1-x/5=0 | | 2x+15=-60 | | 160.3=10x-4= | | 92-x/159=175 | | (15/100)x=60 | | 5(2x-1)-4(3x+5)=2(6x-3)-7(2x-1) | | (6y)^2-24y=0 | | 15-(4+2x)=65 | | -7-6(1-6k)=-13-4k | | 3x+-10=2x+9 | | -5h(h+12)-(4h-2)=h-8 | | 4x-6=3x–1 | | .6x=4000 | | -1/4-3=x+2 | | .60x=4000 | | x-1-x=2x+1-x | | n−3n=2 | | .6x=3000 | | 2x/3+x=0.55 | | 3(4y+2)+6y=5y+6=2y+1 | | 3+2(r−2)=7 | | 3(x-7)+6=16 |