5/(2x)+3=7/x

Simple and best practice solution for 5/(2x)+3=7/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/(2x)+3=7/x equation:



5/(2x)+3=7/x
We move all terms to the left:
5/(2x)+3-(7/x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/2x-(+7/x)+3=0
We get rid of parentheses
5/2x-7/x+3=0
We calculate fractions
5x/2x^2+(-14x)/2x^2+3=0
We multiply all the terms by the denominator
5x+(-14x)+3*2x^2=0
Wy multiply elements
6x^2+5x+(-14x)=0
We get rid of parentheses
6x^2+5x-14x=0
We add all the numbers together, and all the variables
6x^2-9x=0
a = 6; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·6·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*6}=\frac{0}{12} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*6}=\frac{18}{12} =1+1/2 $

See similar equations:

| 5p-9=2+12 | | 900x-10x^2=20 | | 17=4x-9+3x+5 | | 9+7q=-2q+9 | | 8-2p=4-10 | | x+7=350 | | 3(z=7)=21 | | 4(x-4)-16+17=3(x+3) | | 8–2g=-g+2 | | 9m=9=3-5 | | -2(x+3)=-4x+14 | | 2x-1.414213552=0 | | -1-8b=-10b+9 | | 8+5x-5=4-4x-32 | | -34=-5v-42+v | | 3t2-300=0 | | 6+6q=4q+4 | | -4+3u=-9 | | 8c+1=7c14-2c | | 5+6+6v=7+7v | | 10s=6+9s | | 4x-5=3x+2=45 | | -7x+4=12x-14 | | 2/5-9=7-3/5n | | -81=-5(3v-2)+2v | | 5(3x+4)-12x=3(x-1) | | -5z=-8-6z | | 3(u+7)-5u=17 | | F(x)=6|x-3| | | j–4.75=0.602 | | 11+4m=4(2+m) | | 9/36=x/62.8 |

Equations solver categories