5/(3x+2)+(3/x-4)=0

Simple and best practice solution for 5/(3x+2)+(3/x-4)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/(3x+2)+(3/x-4)=0 equation:



5/(3x+2)+(3/x-4)=0
Domain of the equation: (3x+2)!=0
We move all terms containing x to the left, all other terms to the right
3x!=-2
x!=-2/3
x!=-2/3
x∈R
Domain of the equation: x-4)!=0
x∈R
We get rid of parentheses
5/(3x+2)+3/x-4=0
We calculate fractions
5x/(3x^2+2x)+(9x+6)/(3x^2+2x)-4=0
We multiply all the terms by the denominator
5x+(9x+6)-4*(3x^2+2x)=0
We multiply parentheses
-12x^2+5x+(9x+6)-8x=0
We get rid of parentheses
-12x^2+5x+9x-8x+6=0
We add all the numbers together, and all the variables
-12x^2+6x+6=0
a = -12; b = 6; c = +6;
Δ = b2-4ac
Δ = 62-4·(-12)·6
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-18}{2*-12}=\frac{-24}{-24} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+18}{2*-12}=\frac{12}{-24} =-1/2 $

See similar equations:

| 100z+20=420 | | x=2.57+.28 | | 4(y-1)=44 | | -4+5a=46 | | 6t=3=-7 | | t/2+t/6=2 | | 1/2x+3/2=1/2(3-x) | | 11=2(x+4) | | 4a+9a-6=-42 | | m/7+-45=-40 | | -5/4c-1/2=3/4+5/8c | | 12-3x=-6× | | 3(7x7)+5x-8=26x+22 | | 15=4(x+1)-5 | | 1/2x+2/3x-5=x | | 1b+3/2b+1b+45+2b-90+90=540 | | -2(h-4)=2 | | 1/2x+11/12=1/2(3-x) | | 4x-8=24+12 | | -3+4(1-2(x+1))=3(4x+7) | | 99x+1x993=10099103 | | 10=3(x-10)+1x | | 11=12+x | | 3=-3y | | -7x-3x+2=-8x-7 | | -1/2+11/2=1/2(3-x) | | 4x+9-6(x+1)=5x+7 | | 4+(3x/5)=40 | | 75=5(x-5)+20x | | (5/3x+2)+(3/x-4)=0 | | 0.55x+0.5(4-x)=10(42) | | 5^2-4x-9=0 |

Equations solver categories