5/(x-3)+8/x=3

Simple and best practice solution for 5/(x-3)+8/x=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/(x-3)+8/x=3 equation:



5/(x-3)+8/x=3
We move all terms to the left:
5/(x-3)+8/x-(3)=0
Domain of the equation: (x-3)!=0
We move all terms containing x to the left, all other terms to the right
x!=3
x∈R
Domain of the equation: x!=0
x∈R
We calculate fractions
5x/(x^2-3x)+(8x-24)/(x^2-3x)-3=0
We multiply all the terms by the denominator
5x+(8x-24)-3*(x^2-3x)=0
We multiply parentheses
-3x^2+5x+(8x-24)+9x=0
We get rid of parentheses
-3x^2+5x+8x+9x-24=0
We add all the numbers together, and all the variables
-3x^2+22x-24=0
a = -3; b = 22; c = -24;
Δ = b2-4ac
Δ = 222-4·(-3)·(-24)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-14}{2*-3}=\frac{-36}{-6} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+14}{2*-3}=\frac{-8}{-6} =1+1/3 $

See similar equations:

| 5b+29=39 | | 7e+38=10 | | 6b+34=4 | | 5b+12=-38 | | 50=x-x*0.3 | | 3m+4-6=12 | | 50=x-x*0.2 | | −3t+−8=25. | | 50x=50+50*0.2 | | 50x=50-50*0.2 | | 1.2/8=b/10 | | 50*x=62.5-62.5*0.2 | | -53=t/6-59 | | -79=c/7+-70 | | x/2x-4=8 | | 2a/2a=0 | | -1÷2x=5÷3 | | 8x+8=20-4x | | 2y=29H | | 4^x-3^(6x)=0 | | n/6=2/12 | | 1/3x²-x-6=0 | | 9y=800 | | 10y=800 | | 9y=110 | | 2t^2+20t+100=0 | | y-11=77 | | y-53=121 | | y-46=90 | | y+11=77 | | y+53=121 | | 4.654.876x=56.98.6545 |

Equations solver categories