If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/11x+2/3x-1/6=-188
We move all terms to the left:
5/11x+2/3x-1/6-(-188)=0
Domain of the equation: 11x!=0
x!=0/11
x!=0
x∈R
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
5/11x+2/3x+188-1/6=0
We calculate fractions
(-99x^2)/1188x^2+540x/1188x^2+792x/1188x^2+188=0
We multiply all the terms by the denominator
(-99x^2)+540x+792x+188*1188x^2=0
We add all the numbers together, and all the variables
(-99x^2)+1332x+188*1188x^2=0
Wy multiply elements
(-99x^2)+223344x^2+1332x=0
We get rid of parentheses
-99x^2+223344x^2+1332x=0
We add all the numbers together, and all the variables
223245x^2+1332x=0
a = 223245; b = 1332; c = 0;
Δ = b2-4ac
Δ = 13322-4·223245·0
Δ = 1774224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1774224}=1332$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1332)-1332}{2*223245}=\frac{-2664}{446490} =-148/24805 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1332)+1332}{2*223245}=\frac{0}{446490} =0 $
| 10z=1/2 | | -12(x+5)=3(x+0)= | | -13+3x=-2x+12 | | -3(x-7)=-27 | | 137=42+x | | X^2+2x+1=x^2+6x+9 | | 8(12+b)=142 | | 6-5y+10y-12=4-2y+2+4y | | -6(x-2)=3(x-14)= | | -34+6b=8(3b-4) | | 4(x-6)+5-12x=45 | | P(x)=x^+9x+11 | | 7-6k=7/2 | | 3(5x-8)=30 | | X^2+2x+1=x^2+6x+8 | | 2+3/4x=5/6 | | 1/4x+1/3=-1(4/5x+4) | | n/3=11/3=4 | | -6(x-2)=2(x-22)= | | -2y+7=y-14 | | 9-6(4w-1)=w+15 | | 1w-666w=67742231w+1 | | 4x-6+2x=2(3x-3) | | 6y-100=174 | | 8x+40=-3-4 | | 23(8-h)+14h=157 | | 10-4p-28=2(1-p) | | -6(x+5)=2(x+21)= | | 4x-x=12=0 | | 49=x+7 | | 20(8-h)+14h=157 | | 10^4y+6^2=2y-2 |