If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/12d+1/6d+1/3+1/12d=6
We move all terms to the left:
5/12d+1/6d+1/3+1/12d-(6)=0
Domain of the equation: 12d!=0
d!=0/12
d!=0
d∈R
Domain of the equation: 6d!=0determiningTheFunctionDomain 5/12d+1/6d+1/12d-6+1/3=0
d!=0/6
d!=0
d∈R
We calculate fractions
432d^2/648d^2+(54d+5)/648d^2+108d/648d^2-6=0
We multiply all the terms by the denominator
432d^2+(54d+5)+108d-6*648d^2=0
We add all the numbers together, and all the variables
432d^2+108d+(54d+5)-6*648d^2=0
Wy multiply elements
432d^2-3888d^2+108d+(54d+5)=0
We get rid of parentheses
432d^2-3888d^2+108d+54d+5=0
We add all the numbers together, and all the variables
-3456d^2+162d+5=0
a = -3456; b = 162; c = +5;
Δ = b2-4ac
Δ = 1622-4·(-3456)·5
Δ = 95364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{95364}=\sqrt{36*2649}=\sqrt{36}*\sqrt{2649}=6\sqrt{2649}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(162)-6\sqrt{2649}}{2*-3456}=\frac{-162-6\sqrt{2649}}{-6912} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(162)+6\sqrt{2649}}{2*-3456}=\frac{-162+6\sqrt{2649}}{-6912} $
| 5/12d+1/6d+1/3+112d=6 | | 5/8y+6/10=4/5 | | 2x-9+7x-8=-12+5x-9 | | 4x+41=25 | | 4/x=6/13 | | 25=3(2x+2)+5(2x+1) | | 25+4x=41 | | 5/x+6=30 | | -16+3x=-8(7x+2) | | 9x=64.8 | | 2n+.50=10 | | 120+x+100+120+120+(x-10)=720 | | 31+y=31 | | 22=4x-14 | | (7+2x)=3.5 | | n/7+1=8 | | 7+5x=-1+x+8x | | 7+2x=3.5 | | 3t-2=13 | | (X)(y)(2)=168 | | 7/10-3/2x=1/4-3/5x | | 1/4d+2= | | -4k-7k-9=-2k-6k^2-2 | | 196=-2n-8(8-8) | | (3x+4)/2=2x | | 101=-7(x-6)+2 | | 1-7x=7x-111 | | 3+5r=−47 | | 3(9-6x)=-63 | | 40-8x=-5(x-5) | | X×y×2=168 | | 2x*2=3x+14 |