5/2(t)+t=3+3/2(t)

Simple and best practice solution for 5/2(t)+t=3+3/2(t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2(t)+t=3+3/2(t) equation:



5/2(t)+t=3+3/2(t)
We move all terms to the left:
5/2(t)+t-(3+3/2(t))=0
Domain of the equation: 2t!=0
t!=0/2
t!=0
t∈R
Domain of the equation: 2t)!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
5/2t+t-(3/2t+3)=0
We add all the numbers together, and all the variables
t+5/2t-(3/2t+3)=0
We get rid of parentheses
t+5/2t-3/2t-3=0
We multiply all the terms by the denominator
t*2t-3*2t+5-3=0
We add all the numbers together, and all the variables
t*2t-3*2t+2=0
Wy multiply elements
2t^2-6t+2=0
a = 2; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·2·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*2}=\frac{6-2\sqrt{5}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*2}=\frac{6+2\sqrt{5}}{4} $

See similar equations:

| 56x-14=35x-7 | | 2m+1.5=11.7 | | (8x+2)/(5x-1)=13/7 | | -9=-t+16 | | x+24=40x-12 | | (5x-7)/(x+4)=33/12 | | (6(x-7)=9(10x) | | 6x-7=10x+9 | | 2x-32=4x+72 | | X/7+4=z/5 | | (3x-4)/6=x | | 3x-5/6=x | | (2x+6)/3=x | | -2+2n=3n-(1n+2) | | 5(6a+6)=5-6a-4 | | 2w+3=3-1w | | -24=5x+20-6x | | a+200=580 | | 3x-(10-x)=6 | | -4(v+4)+2v+7=5v+12 | | 7v+49=9(v+5) | | 1/8(7t-7)=1/16(t+7) | | -2(w-3)=-7w+26 | | 7w-14=-7(w+4) | | 36+42x+72=252x+360 | | 3(v-4)=2v-42 | | 4x+5(7x-3)=9(x-9) | | x+{2x+3}=27 | | 4x+5(7x-3=9(x-9) | | 8x+7-6(x+1)=9x+7 | | 24=-5v+7(v+4) | | -6(3+x)2(3x+5)=0 |

Equations solver categories