5/2k+1+1/3k-3/4=

Simple and best practice solution for 5/2k+1+1/3k-3/4= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2k+1+1/3k-3/4= equation:



5/2k+1+1/3k-3/4=
We move all terms to the left:
5/2k+1+1/3k-3/4-()=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
We add all the numbers together, and all the variables
5/2k+1/3k-3/4=0
We calculate fractions
(-54k^2)/96k^2+240k/96k^2+32k/96k^2=0
We multiply all the terms by the denominator
(-54k^2)+240k+32k=0
We add all the numbers together, and all the variables
(-54k^2)+272k=0
We get rid of parentheses
-54k^2+272k=0
a = -54; b = 272; c = 0;
Δ = b2-4ac
Δ = 2722-4·(-54)·0
Δ = 73984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{73984}=272$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(272)-272}{2*-54}=\frac{-544}{-108} =5+1/27 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(272)+272}{2*-54}=\frac{0}{-108} =0 $

See similar equations:

| g=17-9 | | m3+4m2=0 | | j+-4=14 | | 6x+46=100 | | 7x9^x=105 | | 70=x+(250/x^2) | | -p=-16 | | F(x)=x3+-1.5x2+-6x | | –p=–16 | | 156=2x-12168=2xx= | | -14+12=c | | f=14+3 | | 15w-9=4w+4 | | 3-5x=16-16x | | q−-3=15 | | g+-11=-6 | | -30+500=20x+150 | | 12x-5=126 | | 6y=3=-7 | | 0=2x^2-36x-9 | | -8u-20=4(u-8) | | -60=-6c | | n+6-6=24-6 | | f=17-4 | | 9(4a-2)=12(30+8) | | 7=-6+s | | w=-12÷-4 | | Y=x2-6x-40 | | 40x+43=47x+43 | | u+-7=-16 | | 9=3-2a | | c=10+-13 |

Equations solver categories