5/2k+1-14/3k=-5/8

Simple and best practice solution for 5/2k+1-14/3k=-5/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2k+1-14/3k=-5/8 equation:



5/2k+1-14/3k=-5/8
We move all terms to the left:
5/2k+1-14/3k-(-5/8)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
We get rid of parentheses
5/2k-14/3k+1+5/8=0
We calculate fractions
90k^2/384k^2+960k/384k^2+(-1792k)/384k^2+1=0
We multiply all the terms by the denominator
90k^2+960k+(-1792k)+1*384k^2=0
Wy multiply elements
90k^2+384k^2+960k+(-1792k)=0
We get rid of parentheses
90k^2+384k^2+960k-1792k=0
We add all the numbers together, and all the variables
474k^2-832k=0
a = 474; b = -832; c = 0;
Δ = b2-4ac
Δ = -8322-4·474·0
Δ = 692224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{692224}=832$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-832)-832}{2*474}=\frac{0}{948} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-832)+832}{2*474}=\frac{1664}{948} =1+179/237 $

See similar equations:

| -3(4x+1)=5(-6x+7)-2 | | 3x-4/8=2x-3/6 | | K+6m=8 | | 2/5(g-)=3 | | 35+4x=7x+7*5 | | 1/6(12m-18)=2m-3 | | 0.6x+64.26=264 | | (x−4)2=28 | | 5)-14+6b+7-2b=1+5b | | x^2-x-20=x^2-3x | | 1/2x-20=10 | | 10-7x=8x=7 | | 2(2y+2)=-8 | | (x−4)2=28 | | n^2-6n-2=-7 | | 1x+2=4(x+6) | | 7x-2=5x=2 | | 91=-7(3a)-1 | | 9-(5x+)=-13x | | 12(2k+11(=12(2k+12) | | 42+11t-4.9t^2=0 | | 2(2y+2)=8 | | 1x+2=4(x+6 | | 72y-6=51 | | t=6/7 | | 5y-10=160 | | 2x+4x+6x+4x=180 | | 90=(9x+5)+(6x+10) | | 0.6x−5=0.1x+7 | | -400=8(7n+6) | | 7m+3=8+7m | | y+-13=-3 |

Equations solver categories