If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/2m=2m+5
We move all terms to the left:
5/2m-(2m+5)=0
Domain of the equation: 2m!=0We get rid of parentheses
m!=0/2
m!=0
m∈R
5/2m-2m-5=0
We multiply all the terms by the denominator
-2m*2m-5*2m+5=0
Wy multiply elements
-4m^2-10m+5=0
a = -4; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·(-4)·5
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{5}}{2*-4}=\frac{10-6\sqrt{5}}{-8} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{5}}{2*-4}=\frac{10+6\sqrt{5}}{-8} $
| 3x+14=124 | | 56=j+2 | | (5x-5)+(6x-27)=180 | | 2x+72=84 | | -16t^2+16t+370=0 | | -4x+101=73 | | 9(2-3x)-29=8×-(x-23 | | (4-p)3+p=16 | | -5.2X+59.9=15.9+1.8x | | 61+5x-15=x | | 8x+35=75 | | 8x+35=105 | | x^2+(2x)^2=125 | | 20+7k=6 | | 8x+35+8x+35=180 | | 0=-3.5t^2+210t | | 10x+25+8x+35=180 | | 2/3n+7/2=14 | | 12x^2+50x+50=0 | | 3/2n+2/7=14 | | X=-2+4x5 | | (7/12x+4)-(10/12x-11)+(9/12x-9)= | | 8x+35=180 | | 16y+7=119 | | 3/2n+7/2=14 | | -30=60x | | 3x^2-84x+588=0 | | 2(x-9)=5x+18 | | 0,5x+3,5=-x-1 | | -6x+10+10x-8=22 | | (7/12x+4)-(5/6x-11)+(3/4x-9)= | | 9y+15=114 |