5/2q+2=6q+3+8q+4

Simple and best practice solution for 5/2q+2=6q+3+8q+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2q+2=6q+3+8q+4 equation:



5/2q+2=6q+3+8q+4
We move all terms to the left:
5/2q+2-(6q+3+8q+4)=0
Domain of the equation: 2q!=0
q!=0/2
q!=0
q∈R
We add all the numbers together, and all the variables
5/2q-(14q+7)+2=0
We get rid of parentheses
5/2q-14q-7+2=0
We multiply all the terms by the denominator
-14q*2q-7*2q+2*2q+5=0
Wy multiply elements
-28q^2-14q+4q+5=0
We add all the numbers together, and all the variables
-28q^2-10q+5=0
a = -28; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·(-28)·5
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{165}}{2*-28}=\frac{10-2\sqrt{165}}{-56} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{165}}{2*-28}=\frac{10+2\sqrt{165}}{-56} $

See similar equations:

| 4s+s-3=17 | | 2u–9=3u+1 | | 4x^2=-52x-160 | | n÷=56 | | 5x-3x+5=-6x+70-5x | | 1+7m=5m-6 | | 2-u=-11 | | 4(5x-1)-3(5x-16)=2(2x+4)-5 | | x^2-2x+6400=0 | | 5n=-12 | | -12h+-8h=20 | | 5x+7=3(61-10x) | | 24-0.8(c-5)=0.4(8c-5) | | -5x-4+7×=28 | | 2x−2=6 | | (4x-3)+3(4x+8)=5x-1 | | 6+14s-3=8s+102-5s | | 7+5z-1=9z+10-3z | | (3x–8)(6x^2+19x–7)=0 | | -(20/100)=(48-x)/x | | 5t-3=18+3(1-t);3 | | 6+x=1.5x | | 5n^2-150=-5n | | m+15=3m+3 | | 7(u-7)=5u-29 | | 4u+40=6(u+9) | | 2x+3/5=x-1/3 | | 5/12m–1/8m=1/3 | | 13x-91=12x | | 14300+1250x=21300-500x | | X^2-9=x+11 | | -6(u+2)=6u-48 |

Equations solver categories