5/2t-t=3+1/2t

Simple and best practice solution for 5/2t-t=3+1/2t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2t-t=3+1/2t equation:



5/2t-t=3+1/2t
We move all terms to the left:
5/2t-t-(3+1/2t)=0
Domain of the equation: 2t!=0
t!=0/2
t!=0
t∈R
Domain of the equation: 2t)!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
5/2t-t-(1/2t+3)=0
We add all the numbers together, and all the variables
-1t+5/2t-(1/2t+3)=0
We get rid of parentheses
-1t+5/2t-1/2t-3=0
We multiply all the terms by the denominator
-1t*2t-3*2t+5-1=0
We add all the numbers together, and all the variables
-1t*2t-3*2t+4=0
Wy multiply elements
-2t^2-6t+4=0
a = -2; b = -6; c = +4;
Δ = b2-4ac
Δ = -62-4·(-2)·4
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{17}}{2*-2}=\frac{6-2\sqrt{17}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{17}}{2*-2}=\frac{6+2\sqrt{17}}{-4} $

See similar equations:

| 5(2x+7)-3x=7(x=5) | | 3-x+2=2(x-5) | | -30=27x=11x=2 | | 4g+3.74=22.38 | | -8n-26=37+13 | | Q=250+5p | | X+7+8x-1=90 | | 4(14q+3.5)-42q=126 | | 4x+1/2(8x+6=2(4x+3) | | 18-t=7 | | f-8=3f | | 18-t=17 | | (x-4)^(2)=-5 | | 7a+6-9=-17 | | 578-3x=501 | | 22.38=4g+3.74 | | 10+6q=15=5q | | (x+5)(x+10)-1050=0 | | 6/x+5=3x+2/x | | -8=2+3z | | 15+20=x | | 4(5t+1)-14=t-(t+9) | | 3y+9=8y+11 | | -16x^2+10x+114=0 | | 3(x-5)+3=12 | | 11-t=17 | | 0=8(y-3)-14y | | 5.2(g+4)=-26 | | 5(1+3p)-2(4-3p)=18 | | 1/3x^2(12x^2-9x+1)=0 | | 10=z/2+11 | | 1x-2=22/3 |

Equations solver categories