5/2u-7/2=-6/5u-4

Simple and best practice solution for 5/2u-7/2=-6/5u-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2u-7/2=-6/5u-4 equation:



5/2u-7/2=-6/5u-4
We move all terms to the left:
5/2u-7/2-(-6/5u-4)=0
Domain of the equation: 2u!=0
u!=0/2
u!=0
u∈R
Domain of the equation: 5u-4)!=0
u∈R
We get rid of parentheses
5/2u+6/5u+4-7/2=0
We calculate fractions
25u/40u^2+48u/40u^2+(-35u)/40u^2+4=0
We multiply all the terms by the denominator
25u+48u+(-35u)+4*40u^2=0
We add all the numbers together, and all the variables
73u+(-35u)+4*40u^2=0
Wy multiply elements
160u^2+73u+(-35u)=0
We get rid of parentheses
160u^2+73u-35u=0
We add all the numbers together, and all the variables
160u^2+38u=0
a = 160; b = 38; c = 0;
Δ = b2-4ac
Δ = 382-4·160·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1444}=38$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-38}{2*160}=\frac{-76}{320} =-19/80 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+38}{2*160}=\frac{0}{320} =0 $

See similar equations:

| w(1/3)=3(1/3)-1 | | v^2+3v+28=0 | | 0=-4.9t^2-9.8t+39.2 | | -6(4x+1)-4x=5(x-1)-4 | | 3^2x=80 | | w(1/3)=3(1/3)-1;1/3=1/3 | | 10=r-(-8/5) | | 2^x=2^x^2-2 | | 8(c-12)=6(2c-16)-4c | | -3(3y-3)+3y=6(y+4) | | a=1.754.5 | | 4.9t^2+9.8t-39.2=0 | | 3(2x)+2(4x-2)=66 | | 6(h+8.5)=123 | | 800+25m=20+45m | | 6={1}{2}21​ z | | 2(v-3)-3=-6(-4v+1)-7v | | -8+(n/10)=32 | | 7.3=x+2.3 | | 15r+8-11r=-20 | | 12x2−3x+4=0 | | d/18=21 | | 4(12x)=3 | | 2(v-3)-3=-6(4v+1)-7v | | 7(p+6)=56 | | 2(x+5)=3(2x10) | | 144=44=-12(x+5) | | -5w+38=4(w-4) | | 102-8n=94 | | 12=0.8(2n+6) | | 5(z+27)=-75 | | -9j+8j=-15+11 |

Equations solver categories