5/2x+(x-4/2)=11

Simple and best practice solution for 5/2x+(x-4/2)=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x+(x-4/2)=11 equation:



5/2x+(x-4/2)=11
We move all terms to the left:
5/2x+(x-4/2)-(11)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
5/2x+(x-2)-11=0
We get rid of parentheses
5/2x+x-2-11=0
We multiply all the terms by the denominator
x*2x-2*2x-11*2x+5=0
Wy multiply elements
2x^2-4x-22x+5=0
We add all the numbers together, and all the variables
2x^2-26x+5=0
a = 2; b = -26; c = +5;
Δ = b2-4ac
Δ = -262-4·2·5
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{159}}{2*2}=\frac{26-2\sqrt{159}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{159}}{2*2}=\frac{26+2\sqrt{159}}{4} $

See similar equations:

| 8+4(1-3f)=21 | | Z=24/(z-5) | | 288=(x+10)3+3x | | 84x-4=72x-244 | | 3j=7+2j | | (1g-4)=(-4g+1) | | 3x-5=-2+30 | | 8+7=9x | | 50x−40=100 | | 9(w-1)=-21 | | 4(x-3)+5=2(x+11)-7 | | -4(6a+5)=22-3a | | 19=19=  9t9t | | 2x+4=x+28 | | -22+7c=4(6c-9) | | 5.6–x=4.2 | | 11-y=5= | | 5h-8h=-19 | | 4x-63=77+9x | | 4-5x-4=24 | | x+x+10+x-13=360 | | (7+9n)-8=-21 | | X^2+15x=190 | | 22x-5=9x-1 | | (1/5)x+4/5=6/5 | | 9x=12=111 | | 14400=1600t-16t2 | | -36=-4x+20 | | 5.6+(-0.2x)=4.8 | | 14x+3=121 | | (3x-2)/7x=1/x | | x/3=350 |

Equations solver categories