5/2x+1/2x=5+7/3x

Simple and best practice solution for 5/2x+1/2x=5+7/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x+1/2x=5+7/3x equation:



5/2x+1/2x=5+7/3x
We move all terms to the left:
5/2x+1/2x-(5+7/3x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/2x+1/2x-(7/3x+5)=0
We get rid of parentheses
5/2x+1/2x-7/3x-5=0
We calculate fractions
(3x+5)/6x^2+(-14x)/6x^2-5=0
We multiply all the terms by the denominator
(3x+5)+(-14x)-5*6x^2=0
Wy multiply elements
-30x^2+(3x+5)+(-14x)=0
We get rid of parentheses
-30x^2+3x-14x+5=0
We add all the numbers together, and all the variables
-30x^2-11x+5=0
a = -30; b = -11; c = +5;
Δ = b2-4ac
Δ = -112-4·(-30)·5
Δ = 721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{721}}{2*-30}=\frac{11-\sqrt{721}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{721}}{2*-30}=\frac{11+\sqrt{721}}{-60} $

See similar equations:

| -3+x2=-13 | | 192x=1536 | | 7j-1=8j-10 | | -1-7-4p=-5p-3 | | 1.3x-5.6=-3 | | 5(2j+3+j)=60 | | 2s-10-8=-2s+10 | | 9m+2=10m+9 | | 245x=1715 | | -2b+1=3b-4 | | 10g+15=95 | | -4u-8u-10=-9u-1 | | 5x+16+8x=20x-12 | | -q+10=8q-8 | | 10x+9+8x-5=112 | | f+7f+5=-6f-9 | | -2q=-q+9 | | -4b+8=-8-2b | | 8q=-9+9q | | x-3.4=8.63 | | 8w+4=4w | | 8-5s=-7s | | 8−5s=–7s | | 6x-8=2÷9x-1 | | 6+2q=10+q​ | | 2-7h=51 | | 11/3x=32/3 | | 1.25=1.05^x | | x/2/7=7/8 | | 30=k–15 | | 6x-3/2=2x+2/8 | | 4x+8°=5X-2+ |

Equations solver categories