5/2x+1/6=2/3x+2

Simple and best practice solution for 5/2x+1/6=2/3x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x+1/6=2/3x+2 equation:



5/2x+1/6=2/3x+2
We move all terms to the left:
5/2x+1/6-(2/3x+2)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x+2)!=0
x∈R
We get rid of parentheses
5/2x-2/3x-2+1/6=0
We calculate fractions
18x^2/216x^2+540x/216x^2+(-144x)/216x^2-2=0
We multiply all the terms by the denominator
18x^2+540x+(-144x)-2*216x^2=0
Wy multiply elements
18x^2-432x^2+540x+(-144x)=0
We get rid of parentheses
18x^2-432x^2+540x-144x=0
We add all the numbers together, and all the variables
-414x^2+396x=0
a = -414; b = 396; c = 0;
Δ = b2-4ac
Δ = 3962-4·(-414)·0
Δ = 156816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{156816}=396$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(396)-396}{2*-414}=\frac{-792}{-828} =22/23 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(396)+396}{2*-414}=\frac{0}{-828} =0 $

See similar equations:

| 3/4(12m+8)=2/3(6m+9) | | 3x2+15x=-13 | | 5(2x-1)^4=0 | | -5/3=-1/5x-7/4 | | -7w+15=2(w-6) | | 2 = h+5/3 | | y=-6(-2.3)-4 | | 4p-20=-26+3p | | 1/3x+1=1/6(2x+3) | | 8=d+5/4 | | -3x+4+5x=4x-12 | | 6p-22=2+2p | | 5x^2=-19x-12 | | 11=x/3+5 | | F(x+1)=4x^2+2x-3 | | 3x2-15x=-7 | | 14-x=17-5x | | 26=8+.25x | | 3x2-15=-7 | | k-3÷=10 | | 26=8+3/4x | | -12u=-24 | | k-3÷4=10 | | 2x+46=6x+6 | | -29=-v/5 | | 1/x+3/x-5=15/x(x-5) | | f(-2)=3+5(-2)+2(-2)^2 | | 3x2-17x+10=0 | | 11y=8-9+6y | | X(4)=2+x | | 60/y=4 | | n+15(n-1)=7 |

Equations solver categories