5/2x+11/12=2/3x

Simple and best practice solution for 5/2x+11/12=2/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x+11/12=2/3x equation:



5/2x+11/12=2/3x
We move all terms to the left:
5/2x+11/12-(2/3x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/2x-(+2/3x)+11/12=0
We get rid of parentheses
5/2x-2/3x+11/12=0
We calculate fractions
198x^2/72x^2+180x/72x^2+(-48x)/72x^2=0
We multiply all the terms by the denominator
198x^2+180x+(-48x)=0
We get rid of parentheses
198x^2+180x-48x=0
We add all the numbers together, and all the variables
198x^2+132x=0
a = 198; b = 132; c = 0;
Δ = b2-4ac
Δ = 1322-4·198·0
Δ = 17424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{17424}=132$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(132)-132}{2*198}=\frac{-264}{396} =-2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(132)+132}{2*198}=\frac{0}{396} =0 $

See similar equations:

| x+1/2x=48 | | (x+1)/(2x-2)+(3x)/(2x-3)=4 | | 6.80-0.25c=0.05c | | 8x(2x-2)=-(x=5) | | -54=2-4(4x-2) | | 3.2(x+3)=4(3+x)+2x | | 5(2b+4)=35 | | 2x-3+5x=8x+2 | | x^2+x-6=-0 | | 18x+-2+7x+42=-60 | | 2x-15+x-5+x=180 | | 136-8.5x=0 | | 68-8.5x=0 | | 6+7x=x+60 | | 68-8x=0 | | 0=60-64x+12x^2 | | 4(2x-2)=-(x+5) | | -6+-2x+-7=-2x+-12-1 | | 1.1b+3=-8 | | 0.2(8x+40)=1.3(x+5) | | 2x+4=-2x+8 | | 40+1.50x=2+1.50x | | 0.5=40x+30 | | 8x+28=12+-20+4x | | 4.2x-15.54=2.1 | | 7x+-28-3x=2x+-28 | | 3+6n=9 | | -10x-9=2x-16-11 | | -5k+-10=13+-1k+1 | | 5x-3(-2)=6 | | 4x-5+2=-3x-6+4x | | 4+2x^2=100 |

Equations solver categories