5/2x+1=7/x+3

Simple and best practice solution for 5/2x+1=7/x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x+1=7/x+3 equation:



5/2x+1=7/x+3
We move all terms to the left:
5/2x+1-(7/x+3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+3)!=0
x∈R
We get rid of parentheses
5/2x-7/x-3+1=0
We calculate fractions
5x/2x^2+(-14x)/2x^2-3+1=0
We add all the numbers together, and all the variables
5x/2x^2+(-14x)/2x^2-2=0
We multiply all the terms by the denominator
5x+(-14x)-2*2x^2=0
Wy multiply elements
-4x^2+5x+(-14x)=0
We get rid of parentheses
-4x^2+5x-14x=0
We add all the numbers together, and all the variables
-4x^2-9x=0
a = -4; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·(-4)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*-4}=\frac{0}{-8} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*-4}=\frac{18}{-8} =-2+1/4 $

See similar equations:

| 2x-1=8x-7/x-1 | | 6+5x3=21 | | 9y-6=51=180 | | 5^2x-1=26(5^x-1) | | 5(n+3)=5n+15 | | -4x-7(11)=-10 | | (3x+1)(x-2)^2(x+6)=0 | | 5x(x)=200 | | b/3+10=19 | | 2/(x+1)=5/(3x-2) | | 25/(x+1)=3 | | (2*4)^x=0.59 | | (2*4)^x=24 | | Y=60–(3xX) | | 4-2t+1= | | 3^x+14=27 | | b308=4708 | | 6a+15+a=78 | | 4x+5+2x-2=21 | | -2(2v-1)+3v=5(v+2) | | -0.125d+50=-0.08d+45.5 | | 6(x-5)=8x-12 | | -7x+5(x+3)=25 | | Y=-2x^2+7x-5 | | y+45=98 | | 6a+12=a+87= | | Y=-5x²+90x | | 3(b-4)=-11+4b | | 10/7=5n-6/n | | 9x2-7=0 | | 0.4t=0.7+0.3t | | 7y=9+3y |

Equations solver categories