5/2x+7/4=3+7/6x

Simple and best practice solution for 5/2x+7/4=3+7/6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x+7/4=3+7/6x equation:



5/2x+7/4=3+7/6x
We move all terms to the left:
5/2x+7/4-(3+7/6x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/2x-(7/6x+3)+7/4=0
We get rid of parentheses
5/2x-7/6x-3+7/4=0
We calculate fractions
504x^2/192x^2+480x/192x^2+(-224x)/192x^2-3=0
We multiply all the terms by the denominator
504x^2+480x+(-224x)-3*192x^2=0
Wy multiply elements
504x^2-576x^2+480x+(-224x)=0
We get rid of parentheses
504x^2-576x^2+480x-224x=0
We add all the numbers together, and all the variables
-72x^2+256x=0
a = -72; b = 256; c = 0;
Δ = b2-4ac
Δ = 2562-4·(-72)·0
Δ = 65536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{65536}=256$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(256)-256}{2*-72}=\frac{-512}{-144} =3+5/9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(256)+256}{2*-72}=\frac{0}{-144} =0 $

See similar equations:

| 5/2x+7-4=3+7/6x | | 11/8x2=190 | | 2.2/19=3/x | | 12=9−k | | X+(x+1)+(x+2)=5252 | | (8+u)(3u+4)=0 | | (1/4y-24)+2=-(3/y-6) | | y-3.5=6;9 | | y-3.5=9;6 | | 64*(7x-8)=1 | | |4x+2|=11 | | 0.1=6600/330x | | x-14/(-4=3 | | 2(x-1)=3=x-3(x+1) | | 24+8x=8(4x+8)+8x | | -3=-19+d5 | | -21=-7(8p+2)-2(7+4p) | | (5x)=x+24 | | 0.10=6600/330(x) | | 4x÷15=16 | | 9x-2=15x+12 | | 3/x-5=15 | | (3•9)•8=(8•3)•n | | 7+k=2+(–4) | | -17+5/n=33 | | 90+(2x+23)+(5x+4)=180 | | 12x-10=14×+2 | | 5x+28=20x-2 | | 5(8.6)-11y=144 | | X+9y=86 | | 5/x+5+3/x-2=21/(x+5)(x-25) | | 5=9t |

Equations solver categories