5/2x-12=18-1/3x

Simple and best practice solution for 5/2x-12=18-1/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x-12=18-1/3x equation:



5/2x-12=18-1/3x
We move all terms to the left:
5/2x-12-(18-1/3x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/2x-(-1/3x+18)-12=0
We get rid of parentheses
5/2x+1/3x-18-12=0
We calculate fractions
15x/6x^2+2x/6x^2-18-12=0
We add all the numbers together, and all the variables
15x/6x^2+2x/6x^2-30=0
We multiply all the terms by the denominator
15x+2x-30*6x^2=0
We add all the numbers together, and all the variables
17x-30*6x^2=0
Wy multiply elements
-180x^2+17x=0
a = -180; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·(-180)·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*-180}=\frac{-34}{-360} =17/180 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*-180}=\frac{0}{-360} =0 $

See similar equations:

| 5(4k-3)=10k-5 | | 4s=3s+1 | | 5+3.50x=19 | | 10u=56+3u | | 5(2)x=60 | | 180=z+26 | | 12+3x=8x+2 | | 42−x=26 | | 2(4x+3)=8(x+2-10 | | -3=k-(-2) | | -1-5p=-2-8(4+2p) | | 15+2.75x=28.75 | | (5x²-x+3)-(2x²+7)=3x²+x+4 | | -x+30=2x-45 | | 6x-3x+13=7+9x-6 | | 5(-6-3x)=-210 | | 4-(2x-7)+5x-3=x | | (3x-15)+2=4x+2 | | 10x-3=x+96 | | P-15/q=-6 | | 8r+16=8(r+2) | | -1/5-4/9f=2/15 | | 7b-6=48 | | 3(x+2)-5=2x-2 | | 14x/10=12 | | 19-19h=-h-19-20h | | 9-c=17c | | 5b-6=3b-8 | | 5x+27=8x+3 | | u+–6=–99 | | 6-10m-19=16+19m | | 15x+6=3x+78 |

Equations solver categories