5/2x-1=2/x+3

Simple and best practice solution for 5/2x-1=2/x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x-1=2/x+3 equation:



5/2x-1=2/x+3
We move all terms to the left:
5/2x-1-(2/x+3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+3)!=0
x∈R
We get rid of parentheses
5/2x-2/x-3-1=0
We calculate fractions
5x/2x^2+(-4x)/2x^2-3-1=0
We add all the numbers together, and all the variables
5x/2x^2+(-4x)/2x^2-4=0
We multiply all the terms by the denominator
5x+(-4x)-4*2x^2=0
Wy multiply elements
-8x^2+5x+(-4x)=0
We get rid of parentheses
-8x^2+5x-4x=0
We add all the numbers together, and all the variables
-8x^2+x=0
a = -8; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-8)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-8}=\frac{-2}{-16} =1/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-8}=\frac{0}{-16} =0 $

See similar equations:

| 8/15=10/x | | -10+x+x-5=7x-5 | | (x^2-6x+8)x(x-8)=0 | | 6n^2-7=n | | 1/3(6x+9)=3/5(2x-4) | | h-5/6=1 | | 2-(3-x)=x-(2+x) | | 9–2c=3 | | x(x+1)=x^2+6-2x | | x(x+1)=x2+6-2x | | 2/8x=32 | | H(x)=-x^+9x | | 16y^2+96y+138.24=0 | | Y+5=5x+18 | | 3r–3=6 | | -2m+6m=5+3m | | 773/4+m=901/2 | | 7+(x-3)=14+10 | | -3x-13=2(2x+4) | | 5(2x+2)-5=-5x+35 | | 2(3x-3)=30 | | -2x+22=5(x+3) | | 3(x+5)=-3x+39 | | y-(-12)=-28 | | -x+1=5(3x-3) | | 10+v=-17v=4 | | 3(x+1)=12+4(x-1 | | 4(3x+1)=-3x+34 | | 2x-4+2x=16 | | 3(x+1)=12+4(×+1 | | 2/3x-4=1/4x+8 | | 8-x-2=4 |

Equations solver categories