5/2x-4=10/x+3

Simple and best practice solution for 5/2x-4=10/x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x-4=10/x+3 equation:



5/2x-4=10/x+3
We move all terms to the left:
5/2x-4-(10/x+3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+3)!=0
x∈R
We get rid of parentheses
5/2x-10/x-3-4=0
We calculate fractions
5x/2x^2+(-20x)/2x^2-3-4=0
We add all the numbers together, and all the variables
5x/2x^2+(-20x)/2x^2-7=0
We multiply all the terms by the denominator
5x+(-20x)-7*2x^2=0
Wy multiply elements
-14x^2+5x+(-20x)=0
We get rid of parentheses
-14x^2+5x-20x=0
We add all the numbers together, and all the variables
-14x^2-15x=0
a = -14; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·(-14)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*-14}=\frac{0}{-28} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*-14}=\frac{30}{-28} =-1+1/14 $

See similar equations:

| 8(2^x-3=48 | | 3x+4x-15=148 | | 1.5q^2-60q+200=0 | | 3/2q^2-60q+200=0 | | 4x=-10.2 | | 2x+3x+130=180 | | 2/5=1x-7/10 | | 4/3x-5=7 | | 3/2*q^2-60q+200=0 | | 2x-2+10-3x=180 | | x+54+x+84+60=180 | | y-2+2=-8+2 | | 6r–8r=-14 | | 49=3p+19 | | 9y+10-2y=-18 | | 20x-4=19x+2 | | 7y+3y-1=6 | | 12x+8=11x+19 | | -6u+8(u+5)=28 | | 4=-4x-3 | | 7=17-4/3x | | 39=2(y-3)+7y | | -30=-5/2u | | 6^2+23x-18=0 | | 4x^2-7x+8=6x+5 | | 5(x+8)-3x=32 | | -w+21=190 | | 292-u=64 | | 229=184-w | | 4q^2-23q+21=0 | | 19c−13c=12 | | x^2-3x-8=-7x-3 |

Equations solver categories