5/2x-4=4/5x+13

Simple and best practice solution for 5/2x-4=4/5x+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/2x-4=4/5x+13 equation:



5/2x-4=4/5x+13
We move all terms to the left:
5/2x-4-(4/5x+13)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+13)!=0
x∈R
We get rid of parentheses
5/2x-4/5x-13-4=0
We calculate fractions
25x/10x^2+(-8x)/10x^2-13-4=0
We add all the numbers together, and all the variables
25x/10x^2+(-8x)/10x^2-17=0
We multiply all the terms by the denominator
25x+(-8x)-17*10x^2=0
Wy multiply elements
-170x^2+25x+(-8x)=0
We get rid of parentheses
-170x^2+25x-8x=0
We add all the numbers together, and all the variables
-170x^2+17x=0
a = -170; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·(-170)·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*-170}=\frac{-34}{-340} =1/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*-170}=\frac{0}{-340} =0 $

See similar equations:

| 19m+9=18m | | 53+y-4=180 | | 5=20c | | Y=10x;(9,-8) | | -8x-6=-2x-12 | | -8x-6=-2x-13 | | p-7/4=6 | | X+3x-7+3(53-x)=180 | | -21k-15=27 | | d=-0.5 | | x•x•x=105 | | b=-42.2b+93= | | -1+4p+7p=-122 | | 5w+20-3w+6=3w+9-w-5 | | -270x(1+4=0 | | -(x)/(9)=-8 | | 700=40(x)+15(1.5X) | | 700=40(x)+1.5(1.5X) | | 5p+4=8p-8 | | x+2x-5=80 | | 5/6t+2=5/8 | | 5(y-5)+4=24 | | 10y-56=-6 | | p-4/5=3 | | -21a+28a+(-6)=-10.2 | | 4z−15=4z+11 | | 3+6x=2+8x | | 5(y-5)+4=25 | | 12w-28+8w+20=22w16 | | 10-8k=2k-10 | | 22=x/5+5 | | 12x-2+70=189 |

Equations solver categories