5/3x+1=4/x+2

Simple and best practice solution for 5/3x+1=4/x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/3x+1=4/x+2 equation:



5/3x+1=4/x+2
We move all terms to the left:
5/3x+1-(4/x+2)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: x+2)!=0
x∈R
We get rid of parentheses
5/3x-4/x-2+1=0
We calculate fractions
5x/3x^2+(-12x)/3x^2-2+1=0
We add all the numbers together, and all the variables
5x/3x^2+(-12x)/3x^2-1=0
We multiply all the terms by the denominator
5x+(-12x)-1*3x^2=0
Wy multiply elements
-3x^2+5x+(-12x)=0
We get rid of parentheses
-3x^2+5x-12x=0
We add all the numbers together, and all the variables
-3x^2-7x=0
a = -3; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·(-3)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*-3}=\frac{0}{-6} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*-3}=\frac{14}{-6} =-2+1/3 $

See similar equations:

| -x+8=3x+4 | | 28x+16=40 | | 7-3n=23 | | (n/4)+5=11 | | -17=-2n+13-8n* | | 2/3(6x+12)=5x-20 | | 8x-3x+7=-3 | | 90+39+(9x-3)=180 | | -3x=70 | | x-2(x+10)=12* | | -8x-5x-3=-16 | | (9x-3)=129 | | 9x+2-3x=20 | | 4.4=4j | | 25=7+3k-12* | | 8+(r+5)=5 | | -6(b+3)+6b=-6(-4b+3 | | x=2.5x+17 | | 8=-2x/5 | | 28.5+18x=16.5=20x | | 90+63+(16x+15)=180 | | 1/2n-10=10 | | 11x-40=90 | | -5+5x=-50 | | 18−–9u=–54 | | -8=r/3 | | z/3-4=11 | | 62=2(x-43) | | 10-1/2n=10 | | 6x+4-2x=4(x-4) | | (9x-8)+(6x+8)+90=180 | | 7=-6m+7* |

Equations solver categories