5/4a+7=7/8a+19

Simple and best practice solution for 5/4a+7=7/8a+19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/4a+7=7/8a+19 equation:



5/4a+7=7/8a+19
We move all terms to the left:
5/4a+7-(7/8a+19)=0
Domain of the equation: 4a!=0
a!=0/4
a!=0
a∈R
Domain of the equation: 8a+19)!=0
a∈R
We get rid of parentheses
5/4a-7/8a-19+7=0
We calculate fractions
40a/32a^2+(-28a)/32a^2-19+7=0
We add all the numbers together, and all the variables
40a/32a^2+(-28a)/32a^2-12=0
We multiply all the terms by the denominator
40a+(-28a)-12*32a^2=0
Wy multiply elements
-384a^2+40a+(-28a)=0
We get rid of parentheses
-384a^2+40a-28a=0
We add all the numbers together, and all the variables
-384a^2+12a=0
a = -384; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-384)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-384}=\frac{-24}{-768} =1/32 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-384}=\frac{0}{-768} =0 $

See similar equations:

| 6k+5=2k=1 | | 6(4c+8)=-18 | | -2q−6=4q | | 5/4a+7=7/8a=19 | | 4z/7+6=-1 | | 8(1-7n)=-264 | | -22=-7(3s-8) | | 7u=40+2u | | -4x+74=90 | | -6x-8(-4-6x)=200 | | 8/3d+35=5/6d=46 | | 21=3+8(x+4) | | -5h-6-4=21 | | 16=2(2w=w-1) | | 21/4+x=5/4 | | 2/11=m/19 | | 0.8y=32 | | -4/7+1/2v=-1/5 | | 17x-23+24x=132 | | 8n-2(n-5)=-3+6n | | 44x-30x+15=12-2x+19 | | 4x+11=-53 | | 7x-4=8x-27 | | 8=4(y-2)+4 | | 44x-30+15=12-2x+19 | | 23.6x=118.0 | | 21x+75-29x=29 | | –3x–4=14 | | 6/7a-12=3/14a+15 | | 8/9a+12=2/9+34 | | x+1.3=4.6 | | X-2/3x=25 |

Equations solver categories