5/4x+3/8=2+1/12x

Simple and best practice solution for 5/4x+3/8=2+1/12x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/4x+3/8=2+1/12x equation:



5/4x+3/8=2+1/12x
We move all terms to the left:
5/4x+3/8-(2+1/12x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 12x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/4x-(1/12x+2)+3/8=0
We get rid of parentheses
5/4x-1/12x-2+3/8=0
We calculate fractions
144x^2/3072x^2+3840x/3072x^2+(-256x)/3072x^2-2=0
We multiply all the terms by the denominator
144x^2+3840x+(-256x)-2*3072x^2=0
Wy multiply elements
144x^2-6144x^2+3840x+(-256x)=0
We get rid of parentheses
144x^2-6144x^2+3840x-256x=0
We add all the numbers together, and all the variables
-6000x^2+3584x=0
a = -6000; b = 3584; c = 0;
Δ = b2-4ac
Δ = 35842-4·(-6000)·0
Δ = 12845056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12845056}=3584$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3584)-3584}{2*-6000}=\frac{-7168}{-12000} =224/375 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3584)+3584}{2*-6000}=\frac{0}{-12000} =0 $

See similar equations:

| 2x-5(x-3)=-7+5x-26 | | x+9=-2x–7 | | 3|2x+3|=25 | | x+(3/2)=3/4(x-1/2) | | (9x-4)/5=6 | | 100x/x^2=200 | | 4x-4=7x+17 | | 4(2x-3)=6x+2) | | 3x+x+72=180 | | -25+12=m-2 | | 4x+2(1x-13)=10 | | (3x+28)+(2x-10)+(5x+52)=180 | | 0.25(x+60)-0.04(x-50)=8.6 | | x3=48 | | 24y-16=8y | | 34+2x=10 | | x*2+4x+3(x+1)=0 | | (x+3)(x+1)(x+1)=0 | | 1/2n+1/3n=15 | | 5x+4=1x+2 | | 3.4y−5.2=3y+2 | | 8v+9=7v | | 21=$y-7 | | X•65x=310 | | 52+4x=36 | | 2^2(x-3)=0.25 | | 72-5y=4y | | 3/4y+5=-5 | | 2(x–1)=-4 | | Y=1/5x+17 | | 4(a+2)=8=4a | | 5m+3=18. |

Equations solver categories