If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/4y=40.y
We move all terms to the left:
5/4y-(40.y)=0
Domain of the equation: 4y!=0We add all the numbers together, and all the variables
y!=0/4
y!=0
y∈R
5/4y-(+40.y)=0
We get rid of parentheses
5/4y-40.y=0
We multiply all the terms by the denominator
-(40.y)*4y+5=0
We add all the numbers together, and all the variables
-(+40.y)*4y+5=0
We multiply parentheses
-160y^2+5=0
a = -160; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-160)·5
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*-160}=\frac{0-40\sqrt{2}}{-320} =-\frac{40\sqrt{2}}{-320} =-\frac{\sqrt{2}}{-8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*-160}=\frac{0+40\sqrt{2}}{-320} =\frac{40\sqrt{2}}{-320} =\frac{\sqrt{2}}{-8} $
| 6(1+7n)=-30+6n | | 49/4=135/x | | 18r-8r=20 | | 16c+4c=980 | | h+-3h-12h=-14 | | -6(7n+3)+5=-13+3n | | (2x+1)2-(x+13)=3x2-2x+2 | | 7−2p=2p+5+2p | | 4(m-2)=243 | | 2(2x=4)=14 | | 180=7x+24+3x+92 | | -8/5+1/2v=-2/3 | | 9u+u-10u+4u-u=18 | | -3x=-25.2 | | 2(x-1)=3x=3 | | 5x+6-2=3x7 | | -6k+15k-20k-7k=18 | | 180=5x-12+2x+24 | | 16x-4=12x | | 8^x-2=1/16 | | 0.5+-0.5=0.15+1-x | | 8^x-2=1/6 | | 18g-12g-g+g-2g=12 | | 1/6s=8160 | | -8t-25=-15 | | 4x^2-40x-160=0 | | +17=19j | | 19m-15m-4m+m=8 | | 4x^2-10x-160=0 | | 7y-3y-y-y+3y=15 | | 5.8+-2p=3.6 | | 19n-7n-11n=9 |