5/5x+7=1/8x

Simple and best practice solution for 5/5x+7=1/8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/5x+7=1/8x equation:



5/5x+7=1/8x
We move all terms to the left:
5/5x+7-(1/8x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5/5x-(+1/8x)+7=0
We get rid of parentheses
5/5x-1/8x+7=0
We calculate fractions
40x/40x^2+(-5x)/40x^2+7=0
We multiply all the terms by the denominator
40x+(-5x)+7*40x^2=0
Wy multiply elements
280x^2+40x+(-5x)=0
We get rid of parentheses
280x^2+40x-5x=0
We add all the numbers together, and all the variables
280x^2+35x=0
a = 280; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·280·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1225}=35$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*280}=\frac{-70}{560} =-1/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*280}=\frac{0}{560} =0 $

See similar equations:

| -4-w=-8 | | 1-3x=7-2(1-x) | | -7=0-m | | 2y-(1-5y)-21=0 | | 0=o+-8 | | Y=4•+x | | 2y-(1-5y)-21=20 | | 12•=7y-10y | | |3x+4|=1 | | 4^x=12 | | x²+24x-20x-480=0 | | 2D^2+7d+3=0 | | 1-2(1-3(x-4))=9x+4 | | 4(x+50)=2x+18 | | 4^18-1=687194a6573 | | -2/5c-8=33 | | (6x-1)(x+2)=(3x+4)(2x+5) | | -7(a+1)-9(a+4)=0 | | 5(x-1)+7(x+4)=0 | | Y=4+3x-^2 | | 7z+2z=8z+5 | | (x-8)^2/5=(4x)^1/5 | | 2x+30+4x=180 | | 2x+30+2x=180 | | 5x-2-7x+4-x-1=0 | | 3y-11=y+17 | | x(x+24)-20(x+24)=0 | | X2-11x-60=0 | | 8x-2+5=6(x+1) | | 2(u-6)=9u+44 | | 11x-(4x-3)=17 | | 13x=75+11x |

Equations solver categories