5/6x+1/3=2/3x+1

Simple and best practice solution for 5/6x+1/3=2/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x+1/3=2/3x+1 equation:



5/6x+1/3=2/3x+1
We move all terms to the left:
5/6x+1/3-(2/3x+1)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x+1)!=0
x∈R
We get rid of parentheses
5/6x-2/3x-1+1/3=0
We calculate fractions
135x/162x^2+(-12x)/162x^2+6x/162x^2-1=0
We multiply all the terms by the denominator
135x+(-12x)+6x-1*162x^2=0
We add all the numbers together, and all the variables
141x+(-12x)-1*162x^2=0
Wy multiply elements
-162x^2+141x+(-12x)=0
We get rid of parentheses
-162x^2+141x-12x=0
We add all the numbers together, and all the variables
-162x^2+129x=0
a = -162; b = 129; c = 0;
Δ = b2-4ac
Δ = 1292-4·(-162)·0
Δ = 16641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16641}=129$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(129)-129}{2*-162}=\frac{-258}{-324} =43/54 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(129)+129}{2*-162}=\frac{0}{-324} =0 $

See similar equations:

| 4x2-7x=2 | | -3×14r=-150 | | 8x2+22x+15=0 | | x-8+16=0 | | 19=10+3m | | -20=-4-8n | | -4p+9=11 | | x-30x-675=0 | | 2x^2–18x+1=0 | | 56÷x=8 | | 17x-2=97 | | x-21x+20=0 | | 8x-2(×+6)=×+47 | | 7x-1=19x+3 | | 9=48+-4.9x2 | | (5/6)x-2x+(4/3)=(5/3) | | 4x+14=8x+8 | | 9​(x-5)=8​(x+​5) | | -2/15=49/30w | | 3.2(8-y)=6y | | X+7y=154 | | 3x+19+7x-8=180 | | X+7y=129 | | 4x+14+5x+35=180 | | -12=b-8 | | 5(x-5)-7x=37 | | 4x+14=5+35 | | 7y=116 | | 5(7t+2)=45 | | 6a-3a-2a=16 | | 4x-5=8x+7 | | -4-4k=8 |

Equations solver categories