5/6x-1/3=1/18x-40

Simple and best practice solution for 5/6x-1/3=1/18x-40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x-1/3=1/18x-40 equation:



5/6x-1/3=1/18x-40
We move all terms to the left:
5/6x-1/3-(1/18x-40)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 18x-40)!=0
x∈R
We get rid of parentheses
5/6x-1/18x+40-1/3=0
We calculate fractions
(-108x^2)/972x^2+810x/972x^2+(-54x)/972x^2+40=0
We multiply all the terms by the denominator
(-108x^2)+810x+(-54x)+40*972x^2=0
Wy multiply elements
(-108x^2)+38880x^2+810x+(-54x)=0
We get rid of parentheses
-108x^2+38880x^2+810x-54x=0
We add all the numbers together, and all the variables
38772x^2+756x=0
a = 38772; b = 756; c = 0;
Δ = b2-4ac
Δ = 7562-4·38772·0
Δ = 571536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{571536}=756$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(756)-756}{2*38772}=\frac{-1512}{77544} =-7/359 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(756)+756}{2*38772}=\frac{0}{77544} =0 $

See similar equations:

| -6(4x-8)=2-x | | 5x-150=3x+130 | | z/5-16=24 | | 10g+3g-11g+4g-2g=20 | | 3+2h=h-7-h | | d/2+12=15 | | 7f-5=9+5f | | -21-8a=-1+7(4-5a) | | 11x-3000=x | | 3(h-12)=15 | | -15-8x+6x=x=2 | | -(7-x)+4(-6x-2)=-2x-9x | | 3x+5-x+10-x=12 | | 7x+3-4=18 | | z/5-–16=24 | | n/2-16=-25 | | H(t)=16t2+24t+18 | | x+72-2x=60 | | 5(2x+3)=7(1x+1) | | -6+5x=-1+6x | | 3.58b-0.245=8.347 | | 21=15x-8x | | 3s=9+6s | | 2.5x+0.5x=0.25+3.5x | | 5x+24+1=5 | | 4(1/2x-1/4)=2x+1/2) | | 17z+20=18z | | 2x+9-3x=4 | | 2.3=x–5.2 | | ⅓x=60 | | x+15=-3(1-x) | | 6w-22=50 |

Equations solver categories