5/6x-2=10+x

Simple and best practice solution for 5/6x-2=10+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x-2=10+x equation:



5/6x-2=10+x
We move all terms to the left:
5/6x-2-(10+x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
We add all the numbers together, and all the variables
5/6x-(x+10)-2=0
We get rid of parentheses
5/6x-x-10-2=0
We multiply all the terms by the denominator
-x*6x-10*6x-2*6x+5=0
Wy multiply elements
-6x^2-60x-12x+5=0
We add all the numbers together, and all the variables
-6x^2-72x+5=0
a = -6; b = -72; c = +5;
Δ = b2-4ac
Δ = -722-4·(-6)·5
Δ = 5304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5304}=\sqrt{4*1326}=\sqrt{4}*\sqrt{1326}=2\sqrt{1326}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-2\sqrt{1326}}{2*-6}=\frac{72-2\sqrt{1326}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+2\sqrt{1326}}{2*-6}=\frac{72+2\sqrt{1326}}{-12} $

See similar equations:

| 79=-8x^2 | | 5+3y=-13+2y | | -7x-29=-7(x+4) | | -4x+9=9-4x | | X/3-3=x/9/3 | | 3t+3t+3t=4t+4t | | (x+5)(x-)=x2+2x-15 | | 4(x-7)=0.3(x+2)2.11 | | -73-2x=-8x+29 | | x(2x-6)=18 | | 10(x-35)=5(3x-8) | | 1/2(x+28)=14 | | X/3-4=3x/4-6 | | −5(x+8)+46=13−6x | | 11(a-50=-3-8 | | -2.3(3x+1.2)+4x=-4 | | 0.4d-3.4=-11.2 | | 12x-13=-6x+1 | | 8w+56=−8 | | -8x+8+(-6x)+20=180 | | 18s=6 | | 9x−5+2x=17 | | 2x-5=2(x-5 | | 9(k-7)=2(11+k) | | 6x+7=2(3x+4)-1 | | 12-3(x-4)=9 | | 3x-45=51+7x | | 5h/4+1=6 | | 5(7+4x)=23 | | 12m+(2m+6)=0 | | -15=x÷3 | | 1.33y=16 |

Equations solver categories