5/6x-3=5/8x+10

Simple and best practice solution for 5/6x-3=5/8x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x-3=5/8x+10 equation:



5/6x-3=5/8x+10
We move all terms to the left:
5/6x-3-(5/8x+10)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 8x+10)!=0
x∈R
We get rid of parentheses
5/6x-5/8x-10-3=0
We calculate fractions
40x/48x^2+(-30x)/48x^2-10-3=0
We add all the numbers together, and all the variables
40x/48x^2+(-30x)/48x^2-13=0
We multiply all the terms by the denominator
40x+(-30x)-13*48x^2=0
Wy multiply elements
-624x^2+40x+(-30x)=0
We get rid of parentheses
-624x^2+40x-30x=0
We add all the numbers together, and all the variables
-624x^2+10x=0
a = -624; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-624)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-624}=\frac{-20}{-1248} =5/312 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-624}=\frac{0}{-1248} =0 $

See similar equations:

| -16+3a=5-6(6a-3) | | 4v-3=5-2v | | 4.9t^2-15t-75=0 | | 0+x=x-0(2/x) | | -1+-p=1 | | x^2+0.08x-0.024=0 | | 0.07x=900 | | |z+9|=|z-4| | | w33—8=15—6 | | 3-3(x+4)+4=4 | | 8-(-4n)=92 | | 4x=7x=33 | | (x-7)^2=36 | | 8-(-4n)=94 | | 4x=-19-5(4x+1) | | 5(2x+10)=35 | | 6x−3+5=14 | | 8b+27=99 | | 4x=-73-3(5x+1) | | 15-3.7m=12.84-2.5 | | -10d+(-10)=-50 | | 4.9t^2-75t-75=0 | | 3/4=2x+10/6 | | 7.3r-5.64=-8.3r+12.72+16.8r | | (3•x)+6=25 | | 45/3x=x/60 | | 7*40+12y=640 | | 8.1-4.6j=-5.5j | | 4x-8=4x-10 | | 1/3x+7=25 | | -6v+8=-100 | | 7*35+12y=640 |

Equations solver categories