5/6x-5=1/4x+2

Simple and best practice solution for 5/6x-5=1/4x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/6x-5=1/4x+2 equation:



5/6x-5=1/4x+2
We move all terms to the left:
5/6x-5-(1/4x+2)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 4x+2)!=0
x∈R
We get rid of parentheses
5/6x-1/4x-2-5=0
We calculate fractions
20x/24x^2+(-6x)/24x^2-2-5=0
We add all the numbers together, and all the variables
20x/24x^2+(-6x)/24x^2-7=0
We multiply all the terms by the denominator
20x+(-6x)-7*24x^2=0
Wy multiply elements
-168x^2+20x+(-6x)=0
We get rid of parentheses
-168x^2+20x-6x=0
We add all the numbers together, and all the variables
-168x^2+14x=0
a = -168; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·(-168)·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*-168}=\frac{-28}{-336} =1/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*-168}=\frac{0}{-336} =0 $

See similar equations:

| 5/2x=3/4x+5/2 | | 21/2x=3/4x+21/2 | | f=9/5(59)+32 | | 3x=11+4x-1 | | -3(n-+5)=12 | | 1.61=1/x | | x-8=÷4x | | 2x-4=6x-6= | | 229-4x+6x-13=180 | | 7(2+2)=x | | 1.66=0.05+1/x | | 1/6=1/20+1/x | | 7x+15+25=180 | | (6t-3)^2=6 | | 1/6=1/20+1/i | | 8.64-x=4.9 | | 4x+20+6=180 | | x^2+1786x-40=0 | | 3√10x2√15= | | 6.2n–3.7n=85+45 | | √x+31=x+1 | | a-0.18=-0.47 | | n/4-5=3 | | p-0.69=-2.13 | | 4.7=y+6.39 | | 7(1+p)-1=3p-2+4(p+2 | | (-10)=w-32+6 | | -4/6=x+2/12 | | x+10*24=246 | | -9w-4=3(-2-3w | | x(x-15)=1 | | N-15=13-6n |

Equations solver categories