5/7a-5=2/3a+1

Simple and best practice solution for 5/7a-5=2/3a+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/7a-5=2/3a+1 equation:



5/7a-5=2/3a+1
We move all terms to the left:
5/7a-5-(2/3a+1)=0
Domain of the equation: 7a!=0
a!=0/7
a!=0
a∈R
Domain of the equation: 3a+1)!=0
a∈R
We get rid of parentheses
5/7a-2/3a-1-5=0
We calculate fractions
15a/21a^2+(-14a)/21a^2-1-5=0
We add all the numbers together, and all the variables
15a/21a^2+(-14a)/21a^2-6=0
We multiply all the terms by the denominator
15a+(-14a)-6*21a^2=0
Wy multiply elements
-126a^2+15a+(-14a)=0
We get rid of parentheses
-126a^2+15a-14a=0
We add all the numbers together, and all the variables
-126a^2+a=0
a = -126; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-126)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-126}=\frac{-2}{-252} =1/126 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-126}=\frac{0}{-252} =0 $

See similar equations:

| 4x^2+6x^2-2x-3=0 | | 2v-8+5v=13 | | (X+3)-(-4x)=-22 | | -4+-g=-6 | | 4x^2-6x^2-2x-3=0 | | 1=2d–3 | | 10–3h=4 | | m-3+ 6= 3 | | 2(-3x)+(-1)=5 | | 4x+19=4(3x-3)+7 | | 2(-3x)-1=5 | | -5(x+1)+3x=6-4x-3 | | (5x+34)+-2(1-7x)=180 | | 5x+16=−3x | | 2m2−7m−13=−10 | | 13+3x=3+2x | | X^3-31x=-30 | | 5+7a=19 | | (7x-1)+(13x+21)=180 | | -1.1+7y=10.1 | | b+1+4=3(2b-8)-16 | | 48y-24y=54-4 | | 42/y=32 | | 9s−8+5s=−10 | | 3+10w=-4+46 | | 3n+5=2n-7 | | 7/6(3x-1)-25/3=3/2(2x-5) | | |8x|+1=26 | | 16n=10 | | 6y+12-24=-60 | | 2x-4(x-5)=-8+4x+16 | | 3/8n=-1/4 |

Equations solver categories