5/7x+7=5/3x+45

Simple and best practice solution for 5/7x+7=5/3x+45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/7x+7=5/3x+45 equation:



5/7x+7=5/3x+45
We move all terms to the left:
5/7x+7-(5/3x+45)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 3x+45)!=0
x∈R
We get rid of parentheses
5/7x-5/3x-45+7=0
We calculate fractions
15x/21x^2+(-35x)/21x^2-45+7=0
We add all the numbers together, and all the variables
15x/21x^2+(-35x)/21x^2-38=0
We multiply all the terms by the denominator
15x+(-35x)-38*21x^2=0
Wy multiply elements
-798x^2+15x+(-35x)=0
We get rid of parentheses
-798x^2+15x-35x=0
We add all the numbers together, and all the variables
-798x^2-20x=0
a = -798; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·(-798)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*-798}=\frac{0}{-1596} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*-798}=\frac{40}{-1596} =-10/399 $

See similar equations:

| 0.5x-13.6=25.3 | | h-2.7=3.9 | | 13.5=-1.5x | | 5(3+2x)=11 | | 12x²-4x-1=0 | | 5x+x=14+x | | 5(2x)=11 | | 2u/5=40 | | 4p+7p=26p+2q=7 | | 4x11=5 | | 11+5b=56-4b | | 1/6(5-7)=t+7/12 | | x²+(6-x)²=12+2x | | 4x-6÷2=3-3x | | x+42°=3+x18° | | x²+(6-x)2=12+2x | | I´(x)=40-0.2x | | -3m+2(2+2m)=-1^2 | | 2m+10=4(m-15) | | 3(-6x-1)=57 | | 4(x+1)-11=17 | | x+(1-x)*45=1 | | 6(d-5)=24 | | 6(d+5)=24 | | T2+3=t2 | | 3x+2x=2x-15 | | Y=-4x^2+11x+24 | | 2x+2x+6+6=6*2x | | 1/64=16^(9x-7) | | 5(3t+9)=47 | | 6952=3572+(x-37000)*0.325 | | 16+3x-8=17 |

Equations solver categories