5/7x-3=1/2x+9

Simple and best practice solution for 5/7x-3=1/2x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5/7x-3=1/2x+9 equation:



5/7x-3=1/2x+9
We move all terms to the left:
5/7x-3-(1/2x+9)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 2x+9)!=0
x∈R
We get rid of parentheses
5/7x-1/2x-9-3=0
We calculate fractions
10x/14x^2+(-7x)/14x^2-9-3=0
We add all the numbers together, and all the variables
10x/14x^2+(-7x)/14x^2-12=0
We multiply all the terms by the denominator
10x+(-7x)-12*14x^2=0
Wy multiply elements
-168x^2+10x+(-7x)=0
We get rid of parentheses
-168x^2+10x-7x=0
We add all the numbers together, and all the variables
-168x^2+3x=0
a = -168; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-168)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-168}=\frac{-6}{-336} =1/56 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-168}=\frac{0}{-336} =0 $

See similar equations:

| 7(d)+6(d)=379 | | 3x-8(2x-33)=180 | | x/85=0 | | 180-x=4(180-2x)-25 | | -3(x-1)^2+1=0 | | 2(2c+4)-2(5-c)=3 | | 3x²+2x=14 | | 2x/3-x=6/x-3/2 | | h=1.5+8.4 | | 5x-3(2x+1)=4X-8 | | 5x+10x+5=2x | | 4x+4/5=21/5=7/20 | | -2-13.8x=-8x(6*1) | | -2-2x/3=-8 | | 15x^2+10x-12=0 | | 3u^2+18u-15=0 | | y-6y+9y=0y(0)=1y(0)=5 | | 5n^2-6n-7=0 | | 27^2x+1=78+3^6x | | 659=7d/11 | | 7x+x=3 | | -3(2x=1)21 | | 12.5y+4=3y-15 | | X+x+x+x+x=10 | | 16a-20=20a | | -3(w-2)=3w+48 | | (5n+25)+(2n+36)=180 | | 5/6x+2/3=9 | | 5t+-3=3t+-5 | | 8.50x+27=75 | | 2x+8=0,x=4 | | -27-10w=9w-40-3w |

Equations solver categories